Autonomous Navigation Scheme of LEO Constellation Based on Inter-satellite Link and Magnetic Field
-
摘要: 为解决星座仅依靠星间链路测量进行自主导航时的整体旋转和漂移问题,提出一种星间链路联合磁测约束的低轨星座自主导航方法.通过星间观测相机和磁强计,获得同轨道相邻卫星视线矢量与地磁场方向之间的角距和地磁场模值,为低轨星座引入空间基准信息.在非秩亏性分析的基础上,分别建立状态方程和量测方程,利用扩展卡尔曼滤波方法进行整星座的最优状态估计.仿真结果表明,星座卫星自主导航位置精度优于20m,速度精度优于0.05m·s-1,自主导航运行时间维持180天,能够满足低轨卫星星座自主导航的应用需求.Abstract: Compared to autonomous navigation of Low Earth Orbit (LEO) constellation based on inter-satellite link only, a method for autonomous navigation of LEO constellation combining inter-satellite link and geomagnetic measurement is proposed to solve the problem about overall rotation and drifting of LEO constellation. The absolute property of geomagnetic field is fully utilized. Spatial reference information is provided for LEO constellation by obtaining and analyzing the angular distance between the line-of-sight vectors of adjacent satellites in the same orbit of the LEO constellation, as well as the direction and module value of geomagnetic field. After non-rank deficient analysis, the state equation and measurement equation are established. The optimal estimation about the whole state of LEO constellation can be realized using Extended Kalman Filtering (EKF). The simulation results demonstrate that the position error is less than 20m and velocity error is less than 0.05m·s-1. The autonomous navigation of LEO constellation can last 180 days, which meets the application requirements.
-
Key words:
- LEO constellation /
- Geomagnetic measurement /
- Inter-satellite link
-
[1] United States Air Force Scientific Advisory Board. Report on Space Surveillance, Asteroids and Comets, and Space Debris[R]. Washington:United States Air Force, 1997:3-5 [2] MEDEIROS D J, TRABAND M, TRIBBLE A, et al. Simulation based design for a shipyard manufacturing process[C]//Proceedings of Winter Simulation Conference. Orlando, Florida:IEEE, 2009, 2:1411-1414 [3] HENDERSON T R, KATZ R H. Network simulation for LEO satellite networks[C]//18th International Communications Satellite Systems Conference and Exhibit. Oakland, CA:American Institute of Aeronautics and Astronautics, 2000:1120-1130 [4] DEL RE E, FANTACCI R, GIAMBENE G. Characterization of user mobility in Low Earth Orbit mobile satellite systems[J]. Wirel. Netw., 2000, 6(3):165-179 [5] LIU W, LI Z, GONG X. Study on combined orbit determination of navigation satellites with ground tracking observation and cross-link ranging observation[C]//Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation. Savannah G A:The Institute of Navigation, 2009:1561-1572 [6] CAI Zhiwu, HAN Chunhao, CHEN Jinping, et al. Constellation rotation error analysis and control in long-term autonomous orbit determination for navigation satellites[J]. J. Astron., 2008, 29(2):522-528(蔡志武, 韩春好, 陈金平, 等. 导航卫星长期自主定轨的星座旋转误差分析与控制[J]. 宇航学报, 2008, 29(2):522-528) [7] RAJAN J A. Highlights of GPS Ⅱ-R autonomous navigation[C]//Proceedings of the 58th Annual Meeting of the Institute of Navigation and CIGTF 21st Guidance Test Symposium. New Mexico V A:Institute of Navigation, 2002:354-363 [8] FERNÁNDEZ F A. Inter-satellite ranging and inter-satellite communication links for enhancing GNSS satellite broadcast navigation data[J]. Adv. Space Res., 2011, 47(5):786-801 [9] PSIAKI M L, POWELL S P, KINHIER JR P M. The accuracy of the GPS-derived acceleration vector, a novel attitude reference[C]//Guidance, Navigation, and Control Conference and Exhibit. Portland, OR, U S A:AIAA, 1999:4073-4079 [10] CAI Zhiwu, ZHAO Dongming, CHEN Jinping, et al. Research on autonomous orbit determination of navigation satellite based on crosslink range and orientation parameters constraining[J]. Geo-Spat. Inf. Sci., 2006, 9(1):18-23 [11] GOLDENBERG F. Geomagnetic navigation beyond magnetic compass[C]//Position Location and Navigation Symposium. California, USA:IEEE, 2006 [12] ZHOU Jianhua, XU Bo. Theory and Method of Heterogeneous Constellation Precise Orbit Determination and Autonomous Orbit Determination[M]. Beijing:Science Publishing Company, 2015:275-289(周建华, 徐波. 异构星座精密轨道确定与自主定轨的理论和方法[M]. 北京:科学出版社, 2015:275-289) [13] ŠIMANDL M, KRÁLOVEC J, TICHAVSKÝ P. Filtering, predictive, and smoothing Cramér-Rao bounds for discrete-time nonlinear dynamic systems[J]. Automatica, 2001, 37(11):1703-1716 [14] XIONG Kai, WEI Chunling, LIU Liangdong. Research on the autonomous navigation of satellite constellation using pulsars[J]. J. Astron., 2008, 29(2):545-549(熊凯, 魏春岭, 刘良栋. 基于脉冲星的卫星星座自主导航技术研究[J]. 宇航学报, 2008, 29(2):545-549) -
-
计量
- 文章访问数: 1773
- HTML全文浏览量: 257
- PDF下载量: 501
-
被引次数:
0(来源:Crossref)
0(来源:其他)