[1] |
National Natural Science Foundation of China. China's Discipline Development Strategy in the Next 10 Years—elax—elax—Space Science[M]. Beijing:Science Press, 2011(国家自然科学基金委员会. 未来10年中国学科发展战略elax—elax—elax—elax空间科学[M]. 北京:科学出版社, 2011)
|
[2] |
National Natural Science Foundation of China. China's Disciplinary Development Strategy—elax—elax—Space Science[M]. Beijing:Science Press, 2019(国家自然科学基金委员会. 中国学科发展战略elax—elax—elax—elax空间科学[M]. 北京:科学出版社, 2019)
|
[3] |
HU Wenrui. Microgravity science and its application[J]. Bull. Chin. Acad. Sci., 1990, 2:95-100(胡文瑞. 微重力科学及其应用研究[J]. 中国科学院院刊, 1990, 2:95-100)
|
[4] |
ZHOU Bojun, ZHONG Xingru, CAO Funian, et al. GaAs single crystal growth from melt in space[J]. J. Semiconduct., 1988, 9(5):548-552, 564(周伯骏, 钟兴儒, 曹福年, 等. 太空熔体生长砷化镓单晶[J]. 半导体学报, 1988, 9(5):548-552, 564)
|
[5] |
WANG Yaoping, PAN Jishen, NIU Xiutian, et al. The second space protein crystal growth experiment in China[J]. Sci. China:Ser. C, 1996, 26(2):121-126(王耀萍, 潘冀燊, 牛秀田, 等. 我国第2次空间蛋白质晶体生长实验[J]. 中国科学:C辑, 1996, 26(2):121-126)
|
[6] |
(周炳红, 刘秋生, 胡良, 等. 两层流体热毛细对流空间实验研究[J]. 中国科学:E辑, 2002, 32(3):316-322ZHOU Binghong, LIU Qiusheng, HU Liang, et al. Experimental study on thermocapillary convection space of two-layer fluid[J]. Sci. China:Ser. E, 2002, 32(3):316-322
|
[7] |
CUI H L, HU L, DUAN L, et al. Space experimental investigation on thermocapillary migration of bubbles[J]. Sci. China G:Phy. Mech. Astron., 2008, 51(7):894-904
|
[8] |
ZHAO J F, WAN S X, LIU G, et al. Subcooling pool boiling on thin wire in microgravity[J]. Acta Astronaut., 2009, 64(2/3):188-194
|
[9] |
SUN S J, GAO Y X, SHU N J, et al. A novel counter sheet-flow sandwich cell culture device for mammalian cell growth in space[J]. Microgravity Sci. Technol., 2008, 20(2):115-120
|
[10] |
(王岳, 程晓斌, 张培元, 等. 用高空气球搭载微重力实验研究浮力对预混V型火焰的影响[J]. 工程热物理学报, 2001, 22(1):130-132WANG Yue, CHENG Xiaobin, ZHANG Peiyuan, et al. Experimental study on the influence of buoyancy on premixed V type flame with high altitude balloon[J]. J. Eng. Therm., 2001, 22(1):130-132
|
[11] |
ZHANG Xiaoqian, WEI Minggang. Falling tower for microgravity combustion[J]. J. Eng. Therm., 1995, 16(4):503-506(张孝谦, 韦明罡. 微重力燃烧用落塔[J]. 工程热物理学报, 1995, 16(4):503-506)
|
[12] |
ZHANG Xiaoqian. Microgravity tower dropping successfully realizes the up throw working mode[J]. Bull. Chin. Acad. Sci., 2000, 3:278-279(张孝谦. 微重力落塔成功地实现上抛工作模式[J]. 中国科学院院刊, 2000, 3:278-279)
|
[13] |
ZHANG Xiaoqian, YANG Ping, FENG Lingzhi, et al. Effect of buoyancy on laminar V-shaped premixed flame angle[J]. J. Eng. Therm., 1996, 17(4):505-508(张孝谦, 杨平, 封灵芝, 等. 浮力对V型火焰张角的影响[J]. 工程热物理学报, 1996, 17(4):505-508)
|
[14] |
WEI Minggang, WAN Shixin, YAO Kangzhuang, et al. Tower drop and microgravity experiment of National Microgravity Laboratory[J]. Manned Spaceflight, 2007, 4:1-3, 22(韦明罡, 万士昕, 姚康庄, 等. 国家微重力实验室落塔及微重力实验研究[J]. 载人航天, 2007, 4:1-3, 22)
|
[15] |
ZHENG Huiqiong, WANG Liufa, CHEN Aidi, et al. Electrofusion of tobacco protoplasts in space[J]. Chin. Sci. Bull., 2003, 48(18):1438-1441(郑慧琼, 王六发, 陈爱地, 等. 烟草细胞的空间电融合[J]. 科学通报, 2003, 48(18):1438-1441)
|
[16] |
XIE J C, LIN H, ZHANG P, et al. Experimental investigation on thermocapillary drop migration at large Marangoni number in reduced gravity[J]. J. Colloid Int. Sci., 2005, 285(2):737-743
|
[17] |
ZHAO J F, XIE J C, LIN H, et al. Experimental studies on two-phase flow patterns aboard the MIR space station[J]. Int. J. Multiphase Flow, 2001, 27(11):1931-1944
|
[18] |
LÜ Congmin, XI Long, ZHAO Guangheng, et al. Microgravity experiment system based on weightless aircraft[J]. J. Tsinghua Univ.:Sci. Technol., 2003, 43(8):1064-1068(吕从民, 席隆, 赵光恒, 等. 基于失重飞机的微重力科学实验系统[J]. 清华大学学报:自然科学版, 2003, 43(8):1064-1068)
|
[19] |
XIE J C, LIN H, HAN J H, et al. Experimental investigation on Marangoni drop rations using drop shaft facility[J]. Int. J. Heat Mass Trans., 1998, 41(14):2077-2081
|
[20] |
HU W R, LONG M, KANG Q, et al. Space experimental studies of microgravity fluid science in China[J]. Chin. Sci. Bull., 2009, 54(22):4035-4048
|
[21] |
HU W R, ZHAO J F, LONG M, et al. Space program SJ-10 of microgravity research[J]. Microgravity Sci. Tech., 2014, 26:159-169
|
[22] |
HU W R, KANG Q. Physical Science under Microgravity:Experiments on Board the SJ-10 Recoverable Satellite[M]. Beijing:Science Press, 2019
|
[23] |
DUAN E, LONG M. Life Science in Space:experiments on Board the SJ-10 Recoverable Satellite[M]. Beijing:Science Press, 2019
|
[24] |
KANG Q, WANG J, DUAN L, et al. The volume ratio effect on flow patterns and transition processes of thermocapillary convection[J]. J. Fluid Mech., 2019, 868:560-583
|
[25] |
KANG Q, WU D, DUAN L, et al. The effects of geometry and heating rate on thermocapillary convection in the liquid bridge[J]. J. Fluid Mech., 2019, 881:951-982
|
[26] |
ZHAO J F, LI J, YAN N, et al. Bubble behavior and heat transfer in quasi-steady pool boiling in microgravity[J]. Microgravity Sci. Tech., 2009, 21(S1):S175-S183
|
[27] |
WEI J J, XUE Y F, ZHAO J F, et al. Bubble behavior and heat transfer of nucleate pool boiling on micro-pin-finned surface in microgravity[J]. Chin. Phy. Lett., 2011, 28(1):016401
|
[28] |
LIU Peng, WU Ke, DU Wangfang, et al. Experimental study on bubble behavior in microgravity pool boiling[J]. Chin. J. Space Sci., 2018, 38(2):221-226(刘鹏, 吴克, 杜王芳, 等. 微重力池沸腾中的气泡行为实验研究[J]. 空间科学学报, 2018, 38(2):221-226)
|
[29] |
WU Ke, ZHAO Jianfu, LI Huixiong, et al. Space and ground experiments on pool boiling phenomenon utilizing SOBER——SJ-10 facility[J]. J. Eng. Therm., 2017, 38(11):2378-2381(吴克, 赵建福, 李会雄, 等. SOBER-SJ10池沸腾现象天地实验研究[J]. 工程热物理学报, 2017, 38(11):2378-2381)
|
[30] |
LI W B, LAN D, SUN Z B, et al. Colloidal material box:in-situ observations of colloidal self-assembly and liquid crystal phase transitions in microgravity[J]. Microgravity Sci. Technol., 2016, 28(2):179-188
|
[31] |
GALLIERO G, BATALLER H, BAZILE J P, et al. Thermodiffusion in multicomponent n-alkane mixtures[J]. NPJ Microgravity, 2017, 3:20
|
[32] |
WANG S, ZHANG X. Microgravity smoldering combustion of flexible polyurethane foam with central ignition[J]. Microgravity Sci. Technol., 2008, 20:99-105
|
[33] |
ZHU F, LU Z, WANG S, et al. Microgravity diffusion flame spread over a thick solid in step-changed low-velocity opposed flows[J]. Combust. Flame, 2019, 205:55-67
|
[34] |
KONG W, WANG B, ZHANG W, et al. Study on prefire phenomena of wire insulation at microgravity[J]. Microgravity Sci. Technol., 2008, 20:107-113
|
[35] |
XUE S, KONG W. Smoke emission and temperature characteristics of the long-term overloaded wire in space[J]. J. Fire Sci., 2019, 37:99-116
|
[36] |
ZHANG H, LIU B, ZHANG Y, et al. Experimental study on coal combustion at microgravity[M]//Physical Science Under Microgravity:Experiments on Board the SJ-10 Recoverable Satellite. Singapore:Science Press and Springer, 2019:263-301
|
[37] |
ZHANG H, FAN R, WANG S, et al. Extinction of lean near-limit methane/air flames at elevated pressures under normal- and reduced-gravity[J]. Proc. Combust. Inst., 2011, 33:1171-1178
|
[38] |
WANG Q, HU L, WANG S, et al. Blowout of non-premixed turbulent jet flames with coflow under microgravity condition[J]. Combust. Flame, 2019, 210:315-323
|
[39] |
WANG Guobiao. Natural Science Foundation of China supported the development of lubricating materials for "Shenqi" real space environment test[J]. Prog. Nat. Sci., 2009, 19(2):165(王国彪. 国家自然科学基金支持项目研制的润滑材料进行"神七" 真实空间环境试验[J]. 自然科学进展, 2009, 19(2):165)
|
[40] |
YIN Zhigang, ZHANG Xingwang, PAN Xiuhong. Space melt materials science:practice 10 recoverable scientific experiment satellite[J]. Physics, 2016, 45(4):213-218(尹志岗, 张兴旺, 潘秀红. 空间熔体材料科学:实践十号返回式科学实验卫星[J]. 物理, 2016, 45(4):213-218)
|
[41] |
YU J D, INATOMI Y, KUMAR V N, et al. Homogeneous InGaSb crystal grown under microgravity using Chinese recovery satellite SJ-10[J]. NPJ Microgravity, 2019, 5:8
|
[42] |
LI X Y, LU Y, MENG X J, et al. Materials experiment on Tiangong-2 space laboratory[J]. Chin. J. Space Sci., 2018, 38(5):829-835
|
[43] |
YIN Zhigang, ZHANG Xingwang, WU Jinliang. Progress in microgravity growth of Ⅲ-V semiconductors[J]. Sci. China:Phys. Mech. Astron., 2020, 50(4):66-78(尹志岗, 张兴旺, 吴金良. Ⅲ-V族半导体微重力生长研究进展[J]. 中国科学:物理学力学天文学, 2020, 50(4):66-78)
|
[44] |
LIU L, LÜ D S, CHEN W B, et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms[J]. Nat. Commun., 2018, 9:2760
|
[45] |
WEI Xing. Taiji-1[J]. China Terminol., 2019, 21(5):80(魏星. 太极一号[J]. 中国科技术语, 2019, 21(5):80)
|
[46] |
LUO J, BAI Y Z, CAI L, et al. The first round result from the Tianqin-1 satellite[J]. Class. Quantum Grav., 2020, 37:185013
|
[47] |
PENG Chengzhi, PAN Jianwei. Quantum science experimental satellite "Micius"[J]. Bull. Chin. Acad. Sci., 2016, 31(9):1096-1104
|
[48] |
CANG Huaixing, ZHANG Heqiao, HAN Yi, et al. Protein crystallization experiments aboard Shenzhou-8 spacecraft[J]. Sci. Technol. Rev., 2012, 30(16):20-25
|
[49] |
ZHENG H Q, WANG L H, XIE J Y. Flowering of Arabidopsis and rice in space[M]//Life Science in Space:Experiments on Board the SJ-10 Recoverable Satellite. Beijing:Science Press, 2019:189-204
|
[50] |
LEI X, CAO Y, ZHANG Y, et al. Advances of mammalian reproduction and embryonic development under microgravity[M]//Life Science in Space:Experiments on Board the SJ-10 Recoverable Satellite. Beijing:Science Press, 2019:281-315
|
[51] |
WANG P, QIAN J, TIAN H, et al. The maintaining and directed differentiation of hematopietic stem cells under microgravity[M]//Life Science in Space:Experiments on Board the SJ-10 Recoverable Satellite. Beijing:Science Press, 2019:205-233
|
[52] |
HAN J, CUI Y, XU B, et al. Three-dimensional cell culture and tissue restoration of neural stem cells under microgravity[M]//Life Science in Space:Experiments on Board the SJ-10 Recoverable Satellite. Beijing:Science Press, 2019:235-279
|
[53] |
ZHANG C, LI L, WANG J. Effects of microgravity on the trans-differentiation between osteogenesis and adipogenesis of human marrow-derived mesenchymal stem cells[M]//Life Science in Space:experiments on Board the SJ-10 Recoverable Satellite. Beijing:Science Press, 2019:317-359
|
[54] |
SUN S, WANG C, LI N, et al. Cell growth and differentiation under microgravity[M]//Life Science in Space:experiments on Board the SJ-10 Recoverable Satellite. Beijing:Science Press, 2019:281-315
|
[55] |
ZHANG H, MIAO J, MO Q, et al. Development and test results of closed two-phase thermosyphons for the Chinese moon exploration spacecraft "CE-3"[C]//Proceeding of 11th International Heat Pipe Symposium. Beijing:China Academy of Aerospace Aerodynamics, 2013
|
[56] |
MIAO Jianyin, CAO Jianfeng, HOU Zengqi. Experimental study on performance of LHP in simulated space environment[J]. J. Eng. Therm., 2003, 24(1):97-99
|
[57] |
YU Y, HE Z, CHUNG C, et al. Testing of CO2 on-orbit fill/refill for the upgraded tracker thermal pump system in the alpha magnetic spectrometer[J]. Appl. Thermal Eng., 2020, 178:115558
|
[58] |
ZHANG Hongxing, MIAO Jianyin, YAO Wei, et al. Experimental study on steady state characteristics of spray cooling system[J]. Chin. Space Sci. Technol., 2009, 4:61-68
|
[59] |
HUANG Y, YANG Q, ZHAO J, et al. Experimental study on flow boiling heat transfer characteristics of ammonia in microchannels[J]. Microgravity Sci. Technol., 2020, 32(3):477-492
|
[60] |
ZHANG H, MI M, MIAO J, et al. Development and on-orbit operation of loop heat pipes on chinese circumlunar return and reentry spacecraft[J]. J. Mech. Sci. Technol., 2017, 31(6):2597-2605
|
[61] |
ZHOU Shuntao, MO Qing, ZHANG Hongxing, et al. Experimental study on supercritical start-up of cryogenic loop heat pipe[J]. Cryogenics, 2010, 3:18-21, 60
|
[62] |
GUO Y D, LIN G, ZHANG H, et al. Investigation on thermal behaviours of a methane charged cryogenic loop heat pipe[J]. Energy, 2018, 157:516-525
|
[63] |
HE J, GUO YD, ZHANG H, et al. Design and experimental investigation of a neon cryogenic loop heat pipe[J]. Heat Mass Trans., 2017, 53(11):3229-3239
|
[64] |
LIU W, GAO Y, DONG W, et al. Flight test results of the microgravity active vibration isolation system in China's Tianzhou-1 mission[J]. Microgravity Sci. Technol., 2018, 30:995-1009
|