留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
李莹辉, 孙野青, 郑慧琼, 商澎, 曲丽娜, 雷晓华, 刘红, 刘敏, 赫荣乔, 龙勉, 孙喜庆, 王俊峰, 周光明, 孙联文. 中国空间生命科学40年回顾与展望[J]. 空间科学学报, 2021, 41(1): 46-67. doi: 10.11728/cjss2021.01.046
引用本文: 李莹辉, 孙野青, 郑慧琼, 商澎, 曲丽娜, 雷晓华, 刘红, 刘敏, 赫荣乔, 龙勉, 孙喜庆, 王俊峰, 周光明, 孙联文. 中国空间生命科学40年回顾与展望[J]. 空间科学学报, 2021, 41(1): 46-67. doi: 10.11728/cjss2021.01.046
LI Yinghui, SUN Yeqing, ZHENG Huiqiong, SHANG Peng, QU Lina, LEI Xiaohua, LIU Hong, LIU Min, HE Rongqiao, LONG Mian, SUN Xiqing, WANG Junfeng, ZHOU Guangming, SUN Lianwen. Recent Review and Prospect of Space Life Science in China for 40 Years[J]. Journal of Space Science, 2021, 41(1): 46-67. doi: 10.11728/cjss2021.01.046
Citation: LI Yinghui, SUN Yeqing, ZHENG Huiqiong, SHANG Peng, QU Lina, LEI Xiaohua, LIU Hong, LIU Min, HE Rongqiao, LONG Mian, SUN Xiqing, WANG Junfeng, ZHOU Guangming, SUN Lianwen. Recent Review and Prospect of Space Life Science in China for 40 Years[J]. Journal of Space Science, 2021, 41(1): 46-67. doi: 10.11728/cjss2021.01.046

中国空间生命科学40年回顾与展望

doi: 10.11728/cjss2021.01.046
详细信息
    作者简介:

    李莹辉,E-mail:yinghuidd@vip.sina.com

  • 中图分类号: V527

Recent Review and Prospect of Space Life Science in China for 40 Years

  • 摘要: 我国空间生命科学的探索起源于20世纪60年代,1981年随着空间生命专业委员会的正式成立,依托此专业的学术交流平台,空间生命科学进入多学科并进多机构建设的新阶段.随着中国载人航天及空间探索研究的深入发展,以分支学科或重大问题为牵引,我国在空间生命科学的几个重要领域取得了一系列关键成果.本文从发展历程、研究成果、平台模型、重大项目与后续展望等方面综述了我国空间生命科学40年的发展历程与标志性成果,为后续发展提供借鉴与参考.

     

  • [1] YANG Fen, LI Yinghui, DING Bai, et al. Cardiomyocyte dysfunction and microtubule depolymerization during space flight[J]. Sci. Bull., 2008, 53(5):561-567(杨芬, 李莹辉, 丁柏, 等. 空间飞行条件下心肌细胞发生功能减退与微管解聚[J]. 科学通报, 2008, 53(5):561-567)
    [2] SHEN Liping. Continuous target of China's manned space project and research direction of space medico-engineering[J]. Space Med. Med. Eng., 2003, 16(z1):475-481(沈力平. 载人航天工程的后续目标与航天医学工程的研究方向[J]. 航天医学与医学工程, 2003, 16(z1):475-481)
    [3] SHEN Xuefu, FU Lan, DENG Yibing. Environmental control and life support system of spacecraft[J]. Space Med. Med. Eng., 2003, 16(z1):543-549(沈学夫, 付岚, 邓一兵. 飞船环境控制与生命保障系统[J]. 航天医学与医学工程, 2003, 16(z1):543-549)
    [4] ZHANG Jingxue, XUE Yueying, WANG Yuqing, et al. Experiments on mice during the Earth orbital flight in China[J]. Space Med. Med. Eng., 1995, 1:53-56(张静雪, 薛月英, 王玉清, 等. 中国首次小鼠的轨道飞行实验[J]. 航天医学与医学工程, 1995, 1:53-56)
    [5] CHEN Shanguang, DENG Yibing, LI Yinghui. Major progresses and prospects of space medico-engineering[J]. Space Med. Med. Eng., 2018, 31(2):79-89(陈善广, 邓一兵, 李莹辉. 航天医学工程学主要研究进展与未来展望[J]. 航天医学与医学工程, 2018, 31(2):79-89)
    [6] FAN Yang, LIU Yunhui, CHEN Shanping, et al. A GABAergic neural circuit in the ventromedial hypothalamus mediates chronic stress-induced bone loss[J]. J. Clinic. Invest., 2020, 130(12):6539-6554
    [7] XU Hongjie, WU Feng, ZHANG Hongyu. Actin cytoskeleton mediates BMP2-Smad signaling via calponin 1 in preosteoblast under simulated microgravity[J]. Biochimie, 2017, 138:184-193
    [8] DAI Zhongquan, GUO Feima, WU Feng, et al. Integrin αvβ3 mediates the synergetic regulation of core-binding factor α1 transcriptional activity by gravity and insulin-like growth factor-1 through phosphoinositide 3-kinasesignaling[J]. Bone, 2014, 69:126-132
    [9] WU XinTong, XIAO Wen, CAO RunYu, et al. Spontaneous cellular vibratory motions of osteocytes are regulated by ATP and spectrin network[J]. Bone, 2019, 128. DOI: 10.1016/j.bone.2019.07.032
    [10] DING Dong, YANG Xiao, LUAN Huiqin, et al. Pharmacological regulation of primary cilium formation affects the mechanosensitivity of osteocytes[J]. Calcified Tissue Int., 2020, 107(6):625-635
    [11] WANG Xiaogang, GUO Baosheng, LI Qi. MiR-214 targets ATF4 to inhibit bone formation[J]. Nat. Med., 2013, 19:93-100
    [12] SUN Weijia, LI Yingxian, ZHAO Baixiao, The mechanosensitive Piezo1 channel is required for bone formation[J]. eLife Sci., 2019, 8. DOI: 10.7554/eLife.47454
    [13] LI Zhili, TAN Chan, WU Yonghua. Whole-body vibration and resistance exercise prevent long-term hindlimb unloading-induced bone loss:independent and interactive effects[J]. Eur. J. Appl. Physiol., 2012, 112(11):3743-3753
    [14] YUE Yong, YAO Yongjie, SUN Xiqing, et al. Weightlessness or weightlessness simulation and vascular remodeling[J]. Space Med. Med. Eng., 2003, 16(2):152-156(岳勇, 姚永杰, 孙喜庆, 等. 失重/模拟失重与血管重塑[J]. 航天医学与航天医学工程, 2003, 16(2):152-156)
    [15] ARBEILLE Philippe, YUAN Ming, BAI Yanqiang. Temporal artery flow response during the last minute of a head up tilt test, in relation with orthostatic intolerance after a 60 day head-down bedrest[J]. PLoS One, 2011, 6(10):e22963
    [16] LING Shukuan, SUN Qiao, LI Yuheng. CKIP-1 inhibits cardiac hypertrophy by regulating class II histone deacetylase phosphorylation through recruiting PP2A[J]. Circulation, 2012, 126(25):3028-3040
    [17] ZHANG Peng, HE Jian, WANG Fei, et al. Hemojubelin is a novel suppressor for Duchenne muscular dystrophy and age-related muscle wasting[J]. J. Cachexia Sarcopeni. Muscle, 2019, 10(3):557-573
    [18] CHEN Hailong, LÜ Ke, QU Lina, et al. Tail suspension disrupts cognition function and down-regulates memory-related proteins expression in rat hippocampus[J]. Space Med. Med. Eng., 2013, 6:426-432(陈海龙, 吕柯, 曲丽娜, 等. 尾吊损害大鼠认知功能并下调海马学习记忆相关蛋白表达[J]. 航天医学与航天医学工程, 2013, 6:426-432)
    [19] SUN Xiqing, XU Zhipeng, ZHANG Shu. Simulated weightlessness can aggravate learning and memory dysfunction and neuronal apoptosis induced by overweight in rats[J]. J. Fourt. Mil. Med. Univ., 2010, 4:48(孙喜庆, 徐志鹏, 张舒. 模拟失重可加重超重所致大鼠学习记忆功能障碍和神经细胞凋亡[J]. 医学争鸣, 2010, 4:48)
    [20] YANG Chao, MA Qianying, ZHANG Hongyu, et al. Ten days of complete fasting affected subjective sensations but not cognitive abilities in healthy adults[J]. European J. Nutrition, 2020, 08:51673:2:0
    [21] MA B H, CAO Y J, ZHENG W B, et al. Real-time micrography of mouse preimplantation embryos in an orbit module on SJ-8 satellite[J]. Microgravity Sci. Technol., 2008, 20:127-136
    [22] LEI Xiaohua, CAO Yujing, MA Baohua, et al. Development of mouse preimplantation embryos in space[J]. Natl. Sci. Rev., 2020, 7:1437-1446
    [23] LEI Xiaohua, CAO Yujing, ZHANG Ying, et al. Effect of microgravity on proliferation and differentiation of embryonic stem cells in an automated culturing system during the TZ-1 space mission[J]. Cell Proliferation, 2018, 51(5):1-10
    [24] ZHANG Cui, LI Liang, WANG Jinfu. Effects of space microgravity on the trans-differentiation Between Osteogenesis and adipogenesis of human marrow-derived mesenchymal stem cell[J]. Life Sci. Space:Exp. Board the SJ-10 Recoverable Satellite, 2019:317-359. DOI: 10.1007/978-981-13-6325-2_12
    [25] (陈海龙, 吕柯, 曲丽娜. 航天飞行队人体睡眠elax——elax觉醒节律的影响研究进展[J]. 航天医学与航天医学工程, 2018, 51(3):392-407

    CHEN Hailong, LÜ Ke, QU Lina. Characterization of sleep-wake patterns in crew members under a short-duration spaceflight[J]. Space Med. Med. Eng., 2018, 51(3):392-407
    [26] FENG Qiang, LAN Xiang, JI Xiaoli, et al. Time series analysis of microbiome at multiple body sites in steady long-term isolation confinement[J]. Gut, 2020. DOI.org/10.1136/gutjnl-2020-320666
    [27] CHEN Hailong, LÜ Ke, JI Guohua, et al. Physiological acclimatization of the liver to 180-day isolation and the Mars Solar Day[J]. BioMed Res. Int., 2020, 2:1-7
    [28] ZHENG H Q, WANG H, WEI N, et al. Live imaging technique for studies of growth and development of Chinese cabbage under microgravity in a recoverable satellite (SJ-8)[J]. Microgravity Sci. Technol., 2008, 20:137-143
    [29] ZHENG Huiqiong, WANG Liufa, CHEN Aidi, et al. Electrofusion of tobacco protoplasts in space[J]. Chin. Sci. Bull., 2003, 48:1438-1441(郑慧琼, 王六发, 陈爱地, 等. 烟草细胞的空间电融合[J]. 科学通报, 2003, 48:1438-1441)
    [30] XU Guoxin, ZHANG Yue, WEI Xiaojing, et al. Analysis of seed development of arabidopsis plants under a 3D Clinostat rotated condition[J]. Chin J. Space Sci., 2012, 32:230-237(徐国鑫, 张岳, 魏晓静, 等. 三维回转器回旋条件下拟南芥胚胎发育与代谢活动分析. 空间科学学报[J]. 2012, 32:230-237)
    [31] TAN C, WANG H, ZHANG Y, et al. A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type[J]. Proteome Sci., 2011, 9:72
    [32] WU Yuanyan, XIE Junyan, WANG Lihua, et al. Circumnutations and growth of inflorescence stems of Arabidopsis thaliana in response to microgravity under different photoperiod conditions[J]. Life, 2020, 10(3):26
    [33] WANG Lihua, HAN Fei, ZHENG Huiqiong. Photoperiod-controlling guttation and growth of rice seedlings under microgravity on board Chinese spacelab TG-2[J]. Microgravity Sci. Technol., 2018, 30(6):834-847
    [34] CHEN Yu, LU Jinying, LI Huasheng, et al. Effects of spaceflight and simulated microgravity on cell sub-microstructure and antioxidant enzyme activity in tomato[J]. Sci. China Technol. Sci., 2015, 58(2). DOI: 10.1007/s11431-014-5642-x
    [35] CHEN Yu, LU Jinying, LI Huasheng, et al. Experiments of tomato plantlet flowering and fructification in space and simulated microgravity environments[J]. Space Med. Med. Eng., 2013, 26(3):1-6(陈瑜, 鹿金颖, 李华盛, 等. 空间环境和模拟微重力环境下番茄试管苗的开花结实实验[J]. 航天医学与医学工程, 2013, 26(3):1-6)
    [36] WANG Jiaping, LIU Yu, ZHAO Guangxian, et al. Integrated proteomic and metabolomics analysis to study the effects of spaceflight on Candida albicans[J] BMC Genomics, 2020, 21(1):57
    [37] HU Wentao, ZHOU Guangming. Challenges and opportunities for the space radiobiology research in China[J]. Sci. Bull., 2019, 64(36):3824-3829(胡文涛, 周光明. 中国空间辐射生物研究面临的挑战和机遇[J]. 科学通报, 2019, 64(36):3824-3829)
    [38] PEI W, HU W, CHAI Z, et al. Current status of space radiobiological studies in China[J]. Life Sci. Space Res., 2019, 22:1-7
    [39] DING Nan, PEI Hailong, HE Jinpeng, et al. Simulated studies on the biological effects of space radiation on quiescent human fibroblasts[J]. Adv. Space Res., 2013, 52:1314-1319
    [40] HU W, PEI W, ZHU L, et al. Microarray profiling of tgf-β1-induced long non-coding RNA expression patterns in human lung bronchial epithelial BEAS-2B cells[J]. Cell. Physiol. Biochem., 2018, 50(6):2071-2085
    [41] MA Y, CHENG Z, WANG W, et al. Proteomic analysis of high yield rice variety mutated from spaceflight[J]. Adv. Space Res., 2007, 40(4):535-539
    [42] WANG W, GU D P, ZHENG Q, et al. Leaf proteomic analysis of three rice heritable mutants after seed space flight[J]. Adv. Space Res., 2008, 42(6):1066-1071
    [43] LU Jinying, ZHANG Wenli, YUAN Hui, et al. Molecular biological analysis of space environment on genetic variation of rice[J]. Satellite Appl., 2011, 11(5):16-19(鹿金颖, 张文利, 袁辉, 等. 空间环境对水稻遗传变异的分子生物学分析[J]. 卫星应用, 2011, 11(5):16-19)
    [44] LU J Y, ZHANG W L, XUE H, et al. Changes in AFLP and SSR DNA polymorphisms induced by short-term space flight of rice seeds[J]. Biol. Plantarum, 2010, 54(1):112-116
    [45] MO Weichuan, FU Jingpeng, DING Haimin, et al. Rongqiao he hypomagnetic field alters circadian rhythm and increases algesia in adult male mice[J]. Prog. Biochem. Biophys., 2015, 42:639-646
    [46] DING Haimin, WANG Xue, MO Weichuan, et al. Hypomagnetic fields cause anxiety in adult male mice[J]. Bioelectromagnetics, 2019, 40(1):27-32
    [47] HU Pingdong, MO Weichuan, FU Jingpeng, et al. Long-term Hypogeomagnetic field exposure reduces muscular mitochondrial function and exercise capacity in adult male mice[J]. Prog. Biochem. Biophys., 2020, 47(5):426-438
    [48] FU Jingpeng, MO Weichuan, LIU Ying, et al. Decline of cell viability and mitochondrial activity in mouse skeletal muscle cell in a hypomagnetic field[J]. Bioelectromagnetics, 2016, 37(4):212-222
    [49] ZHANG Haitao, ZHANG Zijian, MO Weichuan, et al. Shielding of the geomagnetic field reduces hydrogen peroxide production in human neuroblastoma cell and inhibits the activity of CuZn superoxide dismutase[J]. Protein Cell, 2017, 8(7):527-537
    [50] YANG J, MENG X, DONG D, et al. Iron overload involved in the enhancement of unloading-induced bone loss by hypomagnetic field[J]. Bone, 2018, 114:235-245
    [51] XUE Y, YANG J C, LUO J, et al. Disorder of iron metabolism inhibits the recovery of unloading induced bone loss in hypomagnetic field[J]. J. Bone Mineral Res., 2020, 35(6):1163-1173
    [52] XU Zi, YU Qingni, ZHANG Liangchang, et al. Overview of 4-person 180-day integrated experiment in controlled ecological life support system[J]. Space Med. Med. Eng., 2018, 2:264-272(许梓, 余青霓, 张良长, 等. 4人180天受控生态生保系统集成试验概述[J]. 航天医学与医学工程, 2018, 2:264-272)
    [53] FU Y, LI L, XIE B, et al. How to establish a bioregenerative life support system for long-term crewed missions to the Moon or Mars[J]. Astrobiology, 2016, 16(12):925-936
    [54] DONG C, FU Y, XIE B, et al. Element cycling and energy flux responses in ecosystem simulations conducted at the Chinese Lunar Palace-1[J]. Astrobiology, 2017, 17(1):78-86
  • 加载中
计量
  • 文章访问数:  558
  • HTML全文浏览量:  10
  • PDF下载量:  404
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回