留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间里的时间:微重力等环境下的生物节律研究

郭金虎 甘锡惠 马欢

郭金虎, 甘锡惠, 马欢. 空间里的时间:微重力等环境下的生物节律研究[J]. 空间科学学报, 2021, 41(1): 145-157. doi: 10.11728/cjss2021.01.145
引用本文: 郭金虎, 甘锡惠, 马欢. 空间里的时间:微重力等环境下的生物节律研究[J]. 空间科学学报, 2021, 41(1): 145-157. doi: 10.11728/cjss2021.01.145
GUO Jinhu, GAN Xihui, MA Huan. Time in Space:Advances in the Study of Circadian Rhythms under Microgravity[J]. Journal of Space Science, 2021, 41(1): 145-157. doi: 10.11728/cjss2021.01.145
Citation: GUO Jinhu, GAN Xihui, MA Huan. Time in Space:Advances in the Study of Circadian Rhythms under Microgravity[J]. Journal of Space Science, 2021, 41(1): 145-157. doi: 10.11728/cjss2021.01.145

空间里的时间:微重力等环境下的生物节律研究

doi: 10.11728/cjss2021.01.145
基金项目: 

中国航天员科研训练中心人因重点实验室基础研究基金对外开放课题(SYFD180051809K),国家自然科学基金面上项目(31871188,32000824)和航天医学实验领域项目(HYZHXM03007)共同资助

详细信息
    作者简介:

    马欢,E-mail:mhdx001@126.com

  • 中图分类号: R852

Time in Space:Advances in the Study of Circadian Rhythms under Microgravity

  • 摘要: 生物钟是地球上的生物为适应环境周期性变化经历长期演化而来的内在机制.在分子水平上受生物钟基因及其他相关基因的调节;在组织水平上,生物钟由主生物钟和外周生物钟组成.生物钟对于各种生物的生理、认知和行为等具有重要功能,是生物适应环境的决定因素之一.空间环境下的微重力、辐射、光照条件、社会性因素等与地面存在很大差异,这些因素均可能导致节律紊乱,影响生物的生理及环境适应性.因此,对地外生命的研究也应该考虑生物钟因素.对航天员而言,节律紊乱可引起睡眠障碍,并且对骨肌系统、神经系统、心血管系统及内分泌系统等造成不利影响,导致人的认知和工效水平下降.在未来空间生命探索以及航天员健康保障研究中,生物钟是一个不可忽视的重要因素.

     

  • [1] ZWART S R, GIBSON C R, MADER T H, et al. Vision changes after spaceflight are related to alterations in folate-and vitamin B-12-dependent one-carbon metabolism[J]. J. Nutr., 2012, 142(3):427-431
    [2] BRADDOCK M. Ergonomic challenges for astronauts during space travel and the need for space medicine[J]. J. Ergon., 2017, 7(221):2
    [3] CONVERTINO V A. Status of cardiovascular issues related to space flight:implications for future research directions[J]. Respir. Physiol. Neurobiol., 2009, 169:34-37
    [4] MISHRA B, LUDERER U. Reproductive hazards of space travel in women and men[J]. Nat. Rev. Endocrinol., 2019, 15(12):713-730
    [5] GUO Jinhu, QU Weimin, TIAN Yu. Biological Rhythms and Behavior[M]. Beijing:National Defense Industry Press, 2019(郭金虎, 曲卫敏, 田雨. 生物节律与行为[M]. 北京:国防工业出版社, 2019)
    [6] CHEN Shanguang. Manned Space Technology[M]. Beijing:China Astronautic Publishing House, 2018(陈善广. 载人航天技术[M]. 北京:中国宇航出版社, 2018)
    [7] LIANG X, ZHANG L, SHEN H, et al. Effects of a 45-day head-down bed rest on the diurnal rhythms of activity, sleep, and heart rate[J]. Biol. Rhythm. Res., 2014, 45(4):591-601
    [8] GUO J H, QU W M, CHEN S G, et al. Keeping the right time in space:importance of circadian clock and sleep for physiology and performance of astronauts[J]. Mil. Med. Res., 2014, 1:23
    [9] GARRETT-BAKELMAN F E, DARSHI M, GREEN S J, et al. The NASA Twins Study:a multidimensional analysis of a year-long human spaceflight[J]. Science, 2019, 364(6436):8650
    [10] BELL-PEDERSEN D, CASSONE V M, EARNEST D J, et al. Circadian rhythms from multiple oscillators:lessons from diverse organisms[J]. Nat. Rev. Genet., 2005, 6(7):544-556
    [11] GUO J H, MA X H, MA H, et al. Circadian misalignment on submarines and other non-24-h environments——from research to application[J]. Mil. Med. Res., 2020, 7(1):1-12
    [12] KUSAKINA J, DODD A N. Phosphorylation in the plant circadian system[J]. Trends. Plant. Sci., 2012, 17(10):575-583
    [13] HUANG W, RAMSEY K M, MARCHEVA B, et al. Circadian rhythms, sleep, and metabolism[J]. J. Clin. Invest., 2011, 121(6):2133-2141
    [14] TAKAHASHI J S. Transcriptional architecture of the mammalian circadian clock[J]. Nat. Rev. Genet., 2017, 18(3):164
    [15] FRAIKIN G Y, STRAKHOVSKAYA M G, RUBIN A B. Biological photoreceptors of light-dependent regulatory processes[J]. Biochemistry, 2013, 78(11):1238-1253
    [16] KO C H, TAKAHASHI J S. Molecular components of the mammalian circadian clock[J]. Human Mol. Genet., 2006, 15:271-277
    [17] SOLT L A, KPJETIN D J, BURRIS T P. The REV-ERBs and RORs:molecular links between circadian rhythms and lipid homeostasis[J]. Future Med. Chem., 2011, 3:623-638
    [18] UEYAMA T, KROUT K E, VAN NGUYEN X, et al. Suprachiasmatic nucleus:a central autonomic clock[J]. Nat. Neurosci., 1999, 2(12):1051-1053
    [19] BUTLER M P, RAINBOW M N, RODRIGUEZ E, et al. Twelve-hour days in the brain and behavior of split hamsters[J]. Eur. J. Neurosci., 2012, 36(4):2556-2566
    [20] ANTLE M C, SILVER R. Orchestrating time:arrangements of the brain circadian clock[J]. Trends. Neurosci., 2005, 28(3):145-151
    [21] DE PAULA R M, LAMB T M, BENNETT L, et al. A connection between MAPK pathways and circadian clocks[J]. Cell Cycle, 2008, 7(17):2630-2634
    [22] GONCALVES C F, MENG Q J. Timing metabolism in cartilage and bone:links between circadian clocks and tissue homeostasis[J]. J. Endocrinol., 2019, 243(3):29-46
    [23] KARATSOREOS I N. Effects of circadian disruption on mental and physical health[J]. Curr. Neurol. Neurosci. Rep., 2012, 12(2):218-225
    [24] BECHTOLD D A, GIBBS J E, LOUNDON A S I. Circadian dysfunction in disease[J]. Trends. Pharmacol. Sci., 2010, 31(5):191-198
    [25] QIN Ximing, GUO Jinhu. Synchronization of the mammalian central and peripheral circadian clocks[J]. Chin. Sci. Bull., 2017, 62:2849-2856(秦曦明, 郭金虎. 哺乳动物生物钟同步化的研究进展[J]. 科学通报, 2017, 62(25):2849-2856)
    [26] WANG D, ZHANG L, LIANG X, et al. Space meets time:impact of gravity on circadian/diurnal rhythms[J]. Spons. Suppl. Sci.:Human Perform. Space-Adv. Astronaut. Res. China, 2014, 15:17
    [27] NIKAIDO S S, JOHNSON C H. Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii[J]. Photochem. Photobiol., 2000, 71:758-765
    [28] PITTENDRIGH C S, MINIS D H. Circadian systems:longevity as a function of circadian resonance in Drosophila melanogaster[J]. Proc. Natl. Acad. Sci. USA., 1972, 69:1537-1539
    [29] NSA I Y, KARUNARATHNA N, LIU X, et al. A novel cryptochrome-dependent oscillator in Neurospora crassa[J]. Genetics, 2005, 199(1):233-245
    [30] SPOELSTRA S L, GIVEN C W, SIKORSKII A, et al. A randomized controlled trial of the feasibility and preliminary efficacy of a texting intervention on medication adherence in adults prescribed oral anti-cancer agents:study protocol[J]. J. Adv. Nurs., 2015, 71(12):2965-2976
    [31] SPOELSTRA K, WIKELSKI M, DAAN S, et al. Natural selection against a circadian clock gene mutation in mice[J]. Proc. Natl. Acad. Sci. USA., 2016, 113(3):686-691
    [32] DECOURSEY P J, KRULAS J R. Behavior of SCN-lesioned chipmunks in natural habitat:a pilot study[J]. J. Biol. Rhythms., 1998, 13(3):229-244
    [33] OUYANG Y, ANDERSSON C R, KONDO T, et al. Resonating circadian clocks enhance fitness in cyanobacteria[J]. Proc. Natl. Acad. Sci. USA., 1998, 95:8660-8664
    [34] DODD A N, SALATHIA N, HALL A, et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage[J]. Science, 2005, 309(5734):630-633
    [35] MERGENHAGEN D, MERGENHAGEN E. The biological clock of Chlamydomonas reinhardii in space[J]. Eur. J. Cell. Biol., 1987, 43(2):203-207
    [36] SULZMAN F M, ELLMAN D, FULLER C A, et al. Neurospora circadian rhythms in space:a reexamination of the endogenous-exogenous question[J]. Science, 1984, 225(4658):232-234
    [37] HAHN P M, HOSHIZAKI T, ADEV W R. Circadian rhythms of the Macaca nemestrina monkey in Biosatellite 3[J]. Aerosp. Med., 1971, 42(3):295
    [38] HOBAN-HIGGINS T M, ALPATOV A M, WASSMER G T, et al. Gravity and light effects on the circadian clock of a desert beetle, Trigonoscelis gigas[J]. J. Insect. Physiol., 2003, 49(7):671-675
    [39] FULLER C A, HOBAN-HIGGINS T M, KLIMOVITSKY V Y, et al. Primate circadian rhythms during spaceflight:results from Cosmos 2044 and 2229[J]. J. Appl. Physiol., 1996, 81(1):188-193
    [40] HOLLEY D C, DEROSHIA C W, MORAN M M, et al. Chronic centrifugation (hypergravity) disrupts the circadian system of the rat[J]. J. Appl. Physiol., 2003, 95(3):1266-1278
    [41] FUJITA S, RUTTER L, ONG Q, et al. Integrated rna-seq analysis indicates asynchrony in clock genes between tissues under spaceflight[J]. Life, 2020, 10(9):196
    [42] MA L, MA J, XU K. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster[J]. PloS One, 2015, 10(3):0121600
    [43] GUEGUINOU N, JEANDEL J, KAMINSKI S, et al. Modulation of iberian ribbed newt complement component C3 by stressors similar to those encountered during a stay onboard the international space station[J]. Int. J. Mol. Sci., 2019, 20(7):1579
    [44] FULLER C A, MURAKAMI D M, DEMARIA-PESCE V H. Entrainment of circadian rhythms in the rat by daily one hour G pulses[J]. Physiologist, 1992, 35(1):63-64
    [45] CHEN L, ZHANG B, YANG L, et al. BMAL1 disrupted intrinsic diurnal oscillation in rat cerebrovascular contractility of simulated microgravity rats by altering circadian regulation of miR-103/CaV1. 2 signal pathway[J]. Int. J. Mol. Sci., 2019, 20(16):3947
    [46] FUKAZAWA T, TANIMOTO K, SHRESTHA L, et al. Simulated microgravity enhances CDDP-induced apoptosis signal via p53-independent mechanisms in cancer cells[J]. PloS One, 2019, 14(7):0219363
    [47] CHOWDHURY B, SEETHARAM A, WANG Z, et al. A study of alterations in DNA epigenetic modifications (5mC and 5hmC) and gene expression influenced by simulated microgravity in human lymphoblastoid cells[J]. PloS One, 2016, 11(1):0147514
    [48] LÜ K, QU L. Influence of simulated microgravity on clock genes expression rhythmicity and underlying blood circulating miRNAs-mRNA co-expression regulatory mechanism in C57BL/6J mice[J]. Cosp, 2014, 40:F4. 4-6-14
    [49] MALLIS M M, DEROSHIA C W. Circadian rhythms, sleep, and performance in space[J]. Aviat. Space. Environ. Med., 2005, 76(6):94-107
    [50] GUNDEL A, DRESCHER J, POLYAKOV V V. Quantity and quality of sleep during the record manned space flight of 438 days[J]. Human Factors Aerosp. Safety, 2001, 1(1):87-98
    [51] MONK T H, BUESSE D J, BILLY B D, et al. Sleep and circadian rhythms in four orbiting astronauts[J]. J. Biol. Rhythms., 1998, 13(3):188-201
    [52] MONK T H. Aging and space flight:findings from the university of pittsburgh[J]. J. Gravit. Physiol., 1999, 6(1):137-140
    [53] LIANG Xiaodi, LIU Zhizhen, CHEN Xianyun, et al. Unbearable lightness of being-the changes in circadian rhythms under microgravity[J]. Chin. Bull. Life. Sci., 2015, 27(11):1433-1439(梁小弟, 刘志臻, 陈现云, 等. 生命中不能承受之轻-微重力条件下生物昼夜节律的变化研究[J]. 生命科学, 2015, 27(11):1433-1439)
    [54] GUNDEL A, POLYAKOV V V, ZULLEY J. The alteration of human sleep and circadian rhythms during spaceflight[J]. J. Sleep. Res., 1997, 6(1):1-8
    [55] MOLDOFSKY H, LUE F, MacFARLANE J, et al. Long-term effects of microgravity on human sleep, cytokine, and endocrines[J]. Gravit. Space. Biol. Bull., 2000, 14:41
    [56] PETIT G, CEBOLLA A M, FATTINGER S, et al. Local sleep-like events during wakefulness and their relationship to decreased alertness in astronauts on ISS[J]. NPJ. Microgravity., 2019, 5(1):1-9
    [57] STOILOVA I M, JORDANOVA M M. Sleep in microgravity[C]//Proceedings of 2nd International Conference on Recent Advances in Space Technologies 2005. Turkey:IEEE, 2005:744-748
    [58] STOILOVA I, ZDRAVEV T, YANEV T. Evaluation of sleep in space flight[J]. C. R. Acad. Bulg. Sci., 2000, 53(6):59
    [59] BARGER L K, FLYNN-EVANS E E, KUBEY A, et al. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight:an observational study[J]. Lancet. Neurol., 2014, 13(9):904-912
    [60] DIJK D J, NERI D F, WYATT J K, et al. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights[J]. Am. J. Physiol., 2001, 281:1647-1664
    [61] CHEN H, LÜ K, JI G, et al. Characterization of sleep-wake patterns in crew members under a short-duration spaceflight[J]. Biol. Rhythm. Res., 2020, 51(3):392-407
    [62] LIU Z, WAN Y, ZHANG L, et al. Alterations in the heart rate and activity rhythms of three orbital astronauts on a space mission[J]. Life. Sci. Space. Res., 2015, 4:62-66
    [63] MA Huan, LIU Zhizhen, TIAN Yu, et al. Analysis of alertness and diumal rhythms in astronauts before and after an orbital mission[J]. Space Med. Space Eng., 2017, 6:391-395(马欢, 刘至臻, 田雨, 等. 在轨飞行对航天员警觉度及其昼夜节律的影响[J]. 航天医学与医学工程, 2017, 6:391-395)
    [64] FLYNN-EVANS E E, BARGER L K, KUBEY A A, et al. Circadian misalignment affects sleep and medication use before and during spaceflight[J]. NPJ. Microgravity, 2016, 2(1):1-6
    [65] FROST Jr J D, SHUMATE W H, SALAMY J G, et al. Sleep monitoring:the second manned Skylab mission[J]. Aviat. Space. Environ. Med., 1976, 47(4):372-382
    [66] GUNDERL A, NALISHITIi V, REUCHER E, et al. Sleep and circadian rhythm during a short space mission[J]. Clin. Invest., 1993, 1:718-724
    [67] YAMAMOTO N, OTSUKA K, KUBO Y, et al. Effects of long-term microgravity exposure in space on circadian rhythms of heart rate variability[J]. Chronobiol. Int., 2015, 32(3):327-340
    [68] VERHEYDEN B, BECKERS F, COUCKUYT K, et al. Respiratory modulation of cardiovascular rhythms before and after short-duration human spaceflight[J]. Acta. Physiol., 2007, 191(4):297-308
    [69] MANZEY D, LORENZ B, POLJAKOV V. Mental performance in extreme environments:results from a performance monitoring study during a 438-day spaceflight[J]. Ergonomics, 1998, 41(4):537-559
    [70] SCHIFLETT S G. Fifth Annual Workshop on Space Operations Applications and Research (SOAR'91). NASA CP-3127[M]. Washington:NASA, 1992
    [71] LEACH C S, JOHNSON P C Jr. Fluid and electrolyte control in simulated and actual spaceflight[J]. Physiologist, 1985, 28(6):34-37
    [72] MONK T H, KENNEDY K S, ROSE L R, et al. Decreased human circadian pacemaker influence after 100 days in space:a case study[J]. Psychosom. Med., 2001, 63(6):881-885
    [73] KELLY T H, HIENZ R D, ZACONE T J, et al. Crewmember performance before, during, and after spaceflight[J]. J. Exp. Anal. Behav., 2005, 84(2):227-241
    [74] FLYNN C F. Behavioral health and performance support[M]//Principles of Clinical Medicine for Space Flight. New York:Springer, 2008:391-412
    [75] SOLBIATI S, LANDREANI F, TURCATO M, et al. Analysis of changes in cardiac circadian rhythms of RR and QT induced by a 60-day head-down bed rest with and without nutritional countermeasure[J]. Eur. J. Appl. Physiol., 2020, 120(7):1699-1710
    [76] PUTCHA L. Assessment of sleep dynamics in a simulated space station environment[M]//Isolation-NASA Experiments in Closed-Environment Living (Advanced Human Life Support Enclosed System Final Report). San Diego:American Astronautical Society, 2002:131-139
    [77] WAN Yufeng, ZHANG Lin, YU Xinyang, et al. Influence of a 45 d-6o Head-down bed rest on the concentration and circadian rhythms of urinal calcium and phosphorus[J]. Space Med. Med. Eng., 2015, 28(1):11-15(万宇峰, 张琳,喻昕阳, 等. 45d头低位卧床对尿样Ca、P元素含量及昼夜节律的影响[J]. 航天医学与医学工程, 2015, 28(1):11-15)
    [78] CARSKADON M A, DEMENT W C. Norman human sleep[M]//Principles and Practice of Sleep Medicine. Philadelphia:W.B. Saunders Co, 1989:3-13
    [79] WU B, WANG Y, WU X, et al. On-orbit sleep problems of astronauts and countermeasures[J]. Mil. Med. Res., 2018, 5(1):1-12
    [80] STONER J D. Aircrew fatigue monitoring during sustained flight operations from Souda Bay, Crete, Greece[J]. Aviat. Space. Environ. Med., 1996, 67(9):863-866
    [81] MA H, LI Y, LIANG H, et al. Sleep deprivation and a non-24-h working schedule lead to extensive alterations in physiology and behavior[J]. Faseb. J., 2019, 33(6):6969-6979
    [82] HORNE J A. Dimensions to sleepiness[M]. Sleep, Sleepiness and Performance. Chichester:John Wiley & Sons, 1991:169-196
    [83] BARRATT M R, POOL S L. Principles of Clinical Medicine for Space Flight[M]. New York:Springer, 2008
    [84] FURLAN R, BARBIC F, PIAZZA S, et al. Modifications of cardiac autonomic profile associated with a shift schedule of work[J]. Circulation, 2000, 102(16):1912-1916
    [85] MIZUNO K, INOUE N, KRAFT N, et al. Sleep/wake rhythm changes during a simulation study for long duration space mission (SFINCSS-99)[J]. Aviat. Space. Environ. Med., 2001, 72:237
    [86] KOROS A. An Evaluation of Noise and Its Effects on Shuttle Crew members During STS-50/USML-1[M]. Washington:NASA, 1993
    [87] GOEL N, BASNER M, RAO H, et al. Chapter seven-circadian rhythms, sleep deprivation, and human performance[J]. Prog. Mol. Biol. Transl. Sci., 2013, 119:155-190
    [88] WEST K E, JABLONSKI M R, WARFIELD B, et al. Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans[J]. J. Appl. Physiol., 2011, 110(3):619-626
    [89] PUTCHA L, MARSHBURN T H. Fatigue, sleep, and chronotherapy[M]. Principles of Clinical Medicine for Space Flight. New York:Springer, 2008
    [90] WHITSON P A, PUTCHA L, CHEN Y M, et al. Melatonin and cortisol assessment of circadian shifts in astronauts before flight[J]. J. Pineal. Res., 1995, 18(3):141-147
    [91] SANTY P A, KAPANKA H, DAVIS J R, et al. Analysis of sleep on Shuttle missions[J]. Aviat. Space. Environ. Med., 1988, 59(11):1094-1097
    [92] DES MARAIS D J, WALTER M R. Astrobiology:exploring the origins, evolution, and distribution of life in the universe[J]. Ann. Rev. Ecol. Syst., 1999, 30:397-420
    [93] REFINITTI R. Circadian Physiology[M]. Boca Raton:CRC Press, 2016
    [94] WHITMIRE A M, LEVETON L B, BARGER L, et al. Risk of performance errors due to sleep loss, circadian desynchronization, fatigue, and work overload[R]//Human Health and Performance Risks of Space Exploration Missions:Evidence Reviewed by the NASA Human Research Program. NASA SP-2009-3405. Washington D C:National Aeronautics and Space Administration, 2009
    [95] BARGER L K, WRIGHT K P Jr, BURKE T M, et al. Sleep and cognitive function of crewmembers and mission controllers working 24-h shifts during a simulated 105-day spaceflight mission[J]. Acta. Astronaut., 2014, 93:230-242
    [96] BARGER L K, SULLIVAN J P, VINCENT A S, et al. Learning to live on a Mars day:fatigue countermeasures during the Phoenix Mars Lander mission[J]. Sleep, 2012, 35(10):1423-1435
    [97] BRAINARD G C, HANIFIN J P, GREESON J M, et al. Action spectrum for melatonin regulation in humans:evidence for a novel circadian photoreceptor[J]. J. Neurosci., 2001, 21:6405-6412
    [98] WRIGHT K P Jr, HULL J T, CZEISLER C A. Relationship between alertness, performance, and body temperature in humans[J]. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, 283:1370-1377
    [99] BASNER M, DINGES D F, MOLLICONE D, et al. Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing[J]. Proc. Natl. Acad. Sci. USA., 2013, 110(7):2635-2640
    [100] VIGO D E, TUERLINCKX F, OGRINZ B, et al. Circadian rhythm of autonomic cardiovascular control during Mars500 simulated mission to Mars[J]. Aviat. Space. Environ. Med., 2013, 84(10):1023-1028
    [101] HEPPENER M. Moon, Mars and Beyond[M]. Stress Challenges and Immunity in Space. Switzerland:Springer Cham, 2020:709-733
    [102] GEIGER M, WALCH-LIU P, ENGELS C, et al. Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity and higher levels of amino acids in higher plants[J]. Plant. Cell. Environ., 1998, 21:253-268
    [103] BANFIELD D, SPIGA A, NEWMAN C, et al. The atmosphere of Mars as observed by InSight[J]. Nat. Geosci., 2020, 13:190-198
    [104] BROWN F A, HASTINGS J W, PALMER J D. The Biological Cloc:Two Views[M]. New York:Academic Press, 1970
    [105] PITTENDRIGH C S. On the biological problems to be attacked with a series of U.S. satellites in 1966[J]. Life. Sci. Space. Res., 1965, 3:206-214
    [106] BOIVIN D B, TREMBLAY G M, JAMES F O. Working on atypical schedules[J]. Sleep. Med., 2007, 8(6):578-589
  • 加载中
计量
  • 文章访问数:  314
  • HTML全文浏览量:  6
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-06
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回