留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于IHHO-LSSVM的区域GNSS高程异常拟合方法

何广焕 李江 任超 唐诗华 慎昀 刘银涛 张炎

何广焕, 李江, 任超, 唐诗华, 慎昀, 刘银涛, 张炎. 基于IHHO-LSSVM的区域GNSS高程异常拟合方法[J]. 空间科学学报. doi: 10.11728/cjss2026.01.2024-0180
引用本文: 何广焕, 李江, 任超, 唐诗华, 慎昀, 刘银涛, 张炎. 基于IHHO-LSSVM的区域GNSS高程异常拟合方法[J]. 空间科学学报. doi: 10.11728/cjss2026.01.2024-0180
HE Guanghuan, LI Jiang, REN Chao, TANG Shihua, SHEN Yun, LIU Yintao, ZHANG Yan. Regional GNSS Elevation Anomaly Fitting Method Based on IHHO-LSSVM (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-10 doi: 10.11728/cjss2026.01.2024-0180
Citation: HE Guanghuan, LI Jiang, REN Chao, TANG Shihua, SHEN Yun, LIU Yintao, ZHANG Yan. Regional GNSS Elevation Anomaly Fitting Method Based on IHHO-LSSVM (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-10 doi: 10.11728/cjss2026.01.2024-0180

基于IHHO-LSSVM的区域GNSS高程异常拟合方法

doi: 10.11728/cjss2026.01.2024-0180 cstr: 32142.14.cjss.2024-0180
基金项目: 广西高校中青年教师科研基础能力提升项目(2023KY1199, 2024KY1213), 国家重点研发计划项目(2023YFC3007205), 湖北省自然资源科技项目(ZRZY2024KJ07)和国家自然科学基金项目(42064003, 42361052)共同资助
详细信息
    作者简介:
    • 何广焕 男, 1997年03月出生于广西梧州市, 现为广西建设职业技术学院市政与交通学院助理讲师, 硕士, 主要研究方向为GNSS数据处理及应用、无人机数据处理与应用. E-mail: 503871493@qq.com
    通讯作者:
    • 任超 男, 1974年05月出生于河南周口市, 现为桂林理工大学测绘与地理信息学院教授, 博士生导师, 主要研究方向为GNSS数据处理与应用、遥感技术应用研究. E-mail: 2707814165@qq.com
  • 中图分类号: P228

Regional GNSS Elevation Anomaly Fitting Method Based on IHHO-LSSVM

  • 摘要: 针对当前复杂区域难以获取较高精度的高程异常值问题, 提出一种基于IHHO-LSSVM的高程异常拟合方法. 采用具有非线性的收敛因子、跳跃距离和自适应权重对哈里斯鹰优化算法(Harris Hawk Optimization, HHO)进行改进; 利用改进后的HHO算法为最小二乘向量机(Least Squares Support Vector Machine, LSSVM)高程异常拟合模型提供更为精确的正则化参数和核函数; 为验证高程异常组合模型在复杂地形中的适应性, 以高程异常值的均方根误差作为评判依据, 并结合两组不同地形的工程实例数据进行试验. 结果表明, 在桥梁带状区域和喀斯特面状区域, 相比于HHO-LSSVM法和LSSVM法, IHHO-LSSVM拟合模型的外符合精度更高、稳定性更强、适应性更广, 其中桥梁带状区域精度达到0.010 1 m, 喀斯特面状区域达到0.0125 m, 可为GNSS高程异常拟合模型的建立提供一定的参考价值.

     

  • 图  1  初始(a)与改进(b) 的能量变化曲线

    Figure  1.  Change diagrams of the original energy (b) and optimized energy (b)

    图  2  初始(a)与改进(b)逃逸距离变化

    Figure  2.  Change diagrams of the initial escape distance (a) and the improved escape distance (b)

    图  3  IHHO-LSSVM算法流程

    Figure  3.  IHHO-LSSVM algorithm flow

    图  4  带状区域点位分布

    Figure  4.  Point distribution in the strip area

    图  5  收敛曲线

    Figure  5.  Convergence curve

    图  6  残差绝对值对比

    Figure  6.  Comparison of absolute values of residuals

    图  7  面状区域点位分布

    Figure  7.  Point distribution in the surface area

    图  8  检查点残差波动

    Figure  8.  Checkpoint residual variation

    表  1  组合模型参数

    Table  1.   Parameters of the combined model

    参数名含义数值
    sizepop种群规模50
    T最大迭代次数50
    bu模型参数上界10000
    bl模型参数下界0.01
    dim优化参数个数2
    下载: 导出CSV

    表  2  三种方法的外符合精度统计

    Table  2.   Statistics of external coincidence accuracy for three methods

    Comp.
    order
    IHHO-LSSVM HHO-LSSVM LSSVM
    c σ Acc. / m c σ Acc. / m c σ Acc. / m
    1 9.4563 0.0627 0.0101 48.3160 0.3132 0.0120 242.7275  0.3364 0.0159
    2 9.2120 0.0467 0.0101 46.3075 0.4095 0.0126 902.8057  1.0192  0.0153
    3 8.6297 0.0454 0.0101 6.3957 0.2001 0.0125 667.4809  0.8753  0.0157
    4 6.5542 0.0673 0.0099 5.3087 0.2064 0.0126 834.2785 0.9877 0.0160
    5 5.0345 0.0939 0.0103 3.1908 0.1504 0.0125 518.1796  0.7436  0.0157
    6 4.7826 0.0836 0.0103 4.1458 0.1677 0.0122 641.3714  0.8620  0.0155
    7 6.3225 0.0759 0.0100 19.8899 0.3015 0.0125 746.0421  0.3305  0.0154
    8 9.9653 0.0475 0.0102 99.9546 0.5915 0.0129 254.1818  0.3484  0.0155
    9 10.9717 0.0592 0.0103 25.6355 0.3020 0.0123 571.8598  0.8055  0.0162
    10 7.3621 0.0492 0.0099 46.7021 0.3757 0.0124 946.7136  1.0382  0.0161
    Ave. acc. 0.0101 0.0125 0.0157
    下载: 导出CSV

    表  3  检查点的预测结果及精度分析

    Table  3.   Prediction results and accuracy analysis of checkpoints

    CheckpointsGiven height
    anomaly/m
    Residual error /m
    IHHOHHOLSSVM
    1–20.7172–0.0140–0.0240–0.0320
    2–20.65370.03380.039 10.0423
    3–20.52300.00 6–0.0078–0.0116
    4–20.07590.01200.00300.0016
    5–20.0170–0.00110.00150.0020
    6–19.9065–0.0002–0.0003–0.0003
    7–20.44480.0031–0.0036–0.0060
    8–19.8739–0.00050.00250.0039
    9–19.93600.00630.00950.0100
    10–20.13650.01520.00750.0038
    11–20.43280.00460.01240.0139
    12–20.4832–0.0013–0.0400–0.0523
    13–19.9431–0.0067–0.00070.0004
    14–19.94990.01230.0027–0.0004
    15–20.02010.01050.00650.0039
    16–20.0453–0.010 5–0.0026–0.0003
    17–19.8213–0.0154–0.0067–0.0043
    18–19.70910.01230.00920.0092
    19–20.0251–0.0206–0.0191–0.0174
    20–19.60360.00960.00780.0043
    下载: 导出CSV
  • [1] JIN Lijun, CHEN Biyan, WANG Xiaoman, et al. Global Accuracy Assessment and Analysis of the Ionospheric Model IRI-Plas 2020 and IRI-2020 Based on GNSS Observations[J]. Chinese Journal of Space Science, 2024, 44(6): 1031-1046 (金俐君, 陈必焰, 王晓嫚, 等. 基于2021年GNSS TEC的电离层模型IRI-Plas 2020与IRI-2020的全球精度评估[J]. 空间科学学报, 2024, 44(6): 1031-1046 doi: 10.11728/cjss2024.06.2023-0075

    JIN Lijun, CHEN Biyan, WANG Xiaoman, et al. Global Accuracy Assessment and Analysis of the Ionospheric Model IRI-Plas 2020 and IRI-2020 Based on GNSS Observations[J]. Chinese Journal of Space Science, 2024, 44(6): 1031-1046 doi: 10.11728/cjss2024.06.2023-0075
    [2] WANG Dongwei, SUN Yueqiang, WANG Xianyi, et al. A New GNSS-R Interferometric Ocean Altimetry Using Beidou-3 Signal[J]. Chinese Journal of Space Science, 2022, 42(3): 492-499 (王冬伟, 孙越强, 王先毅, 等. 一种基于北斗三号系统的GNSS-R海面干涉测高技术[J]. 空间科学学报, 2022, 42(3): 492-499 doi: 10.11728/cjss2022.03.210315029

    WANG Dongwei, SUN Yueqiang, WANG Xianyi, et al. A New GNSS-R Interferometric Ocean Altimetry Using Beidou-3 Signal[J]. Chinese Journal of Space Science, 2022, 42(3): 492-499 doi: 10.11728/cjss2022.03.210315029
    [3] WANG Guoquan, BAO Yan. GNSS landslide monitoring based on regional reference frame[J]. Journal of Surveying and Mapping, 2022, 51(10): 2107-2116 (王国权, 鲍艳. 基于区域参考框架的GNSS滑坡监测[J]. 测绘学报, 2022, 51(10): 2107-2116

    WANG Guoquan, BAO Yan. GNSS landslide monitoring based on regional reference frame[J]. Journal of Surveying and Mapping, 2022, 51(10): 2107-2116
    [4] WEI Dehong, XUAN Jianhao, YANG Jiawei, et al. GNSS elevation conversion accuracy analysis in mountainous areas based on deep BP/ELMAN neural network[J]. Bulletin of Surveying and Mapping, 2023(09): 113-116+143 (魏德宏, 禤键毫, 杨嘉伟, 等. 基于深度BP/ELMAN神经网络的山区GNSS高程转换精度分析[J]. 测绘通报, 2023(09): 113-116+143 doi: 10.13474/j.cnki.11-2246.2023.0244

    WEI Dehong, XUAN Jianhao, YANG Jiawei, et al. GNSS elevation conversion accuracy analysis in mountainous areas based on deep BP/ELMAN neural network[J]. Bulletin of Surveying and Mapping, 2023(09): 113-116+143 doi: 10.13474/j.cnki.11-2246.2023.0244
    [5] DUAN Wenyi, XU Yezhang, WANG Lingfeng, et al. A Seven-Parameter Transformation Method for Single Ellipsoid Based on CGC-S2000 Framework[J]. Science of Surveying and Mapping, 2017, 42(06): 50-54 (段文义, 许烨璋, 王灵锋, 等. 一种基于CGC-S2000框架的单椭球七参数转换法[J]. 测绘科学, 2017, 42(06): 50-54 doi: 10.16251/j.cnki.1009-2307.2017.06.010

    DUAN Wenyi, XU Yezhang, WANG Lingfeng, et al. A Seven-Parameter Transformation Method for Single Ellipsoid Based on CGC-S2000 Framework[J]. Science of Surveying and Mapping, 2017, 42(06): 50-54 doi: 10.16251/j.cnki.1009-2307.2017.06.010
    [6] ZHANG Yan, LIU Lilong, MENG Jinlong, et al. A regional elevation anomaly fitting method for IGrubbs-LWLR[J]. Radio Engineering, 2023, 53(10): 2345-2351 (张炎, 刘立龙, 蒙金龙, 等. 一种IGrubbs-LWLR的区域高程异常拟合方法[J]. 无线电工程, 2023, 53(10): 2345-2351 doi: 10.3969/j.issn.1003-3106.2023.10.015

    ZHANG Yan, LIU Lilong, MENG Jinlong, et al. A regional elevation anomaly fitting method for IGrubbs-LWLR[J]. Radio Engineering, 2023, 53(10): 2345-2351 doi: 10.3969/j.issn.1003-3106.2023.10.015
    [7] QIAN Jianguo, FAN Yiguang. Research on GPS Elevation Fitting Based on Improved Wavelet Neural Network[J]. Journal of Geodesy and Geodynamics, 2022, 42(03): 253-257 (钱建国, 樊意广. 基于改进小波神经网络的GPS高程拟合研究[J]. 大地测量与地球动力学, 2022, 42(03): 253-257 doi: 10.14075/j.jgg.2022.03.007

    QIAN Jianguo, FAN Yiguang. Research on GPS Elevation Fitting Based on Improved Wavelet Neural Network[J]. Journal of Geodesy and Geodynamics, 2022, 42(03): 253-257 doi: 10.14075/j.jgg.2022.03.007
    [8] ZHANG Huailiang, LI Xiaoli, ZHU Saihu. Study on Improved Multi-faceted Function Fitting of Regional Elevation Anomalies across Zones[J]. Science of Surveying and Mapping, 2016, 41(03): 132-137 (张怀亮, 李晓莉, 朱赛虎. 改进多面函数拟合跨带区域高程异常的研究[J]. 测绘科学, 2016, 41(03): 132-137 doi: 10.16251/j.cnki.1009-2307.2016.03.027

    ZHANG Huailiang, LI Xiaoli, ZHU Saihu. Study on Improved Multi-faceted Function Fitting of Regional Elevation Anomalies across Zones[J]. Science of Surveying and Mapping, 2016, 41(03): 132-137 doi: 10.16251/j.cnki.1009-2307.2016.03.027
    [9] ZHOU Fei, ZHANG Yan, TANG Shihua, et al. Analysis of Area Elevation Fitting Accuracy Optimized by Bee Colony Algorithm[J]. Science Technology and Engineering, 2020, 20(16): 6330-6335 (周飞, 张炎, 唐诗华, 等. 利用蜂群算法优化的区域高程拟合精度分析[J]. 科学技术与工程, 2020, 20(16): 6330-6335 doi: 10.3969/j.issn.1671-1815.2020.16.003

    ZHOU Fei, ZHANG Yan, TANG Shihua, et al. Analysis of Area Elevation Fitting Accuracy Optimized by Bee Colony Algorithm[J]. Science Technology and Engineering, 2020, 20(16): 6330-6335 doi: 10.3969/j.issn.1671-1815.2020.16.003
    [10] XIE Yangyang, FU Chao, XIE Kun, et al. Application of Grey Minimum Support Vector Machine Model in Elevation Fitting[J]. Science of Surveying and Mapping, 2021, 46(03): 55-60 (谢洋洋, 付超, 解琨, 等. 灰色最小支持向量机模型在高程拟合中的应用[J]. 测绘科学, 2021, 46(03): 55-60 doi: 10.16251/j.cnki.1009-2307.2021.03.009

    XIE Yangyang, FU Chao, XIE Kun, et al. Application of Grey Minimum Support Vector Machine Model in Elevation Fitting[J]. Science of Surveying and Mapping, 2021, 46(03): 55-60 doi: 10.16251/j.cnki.1009-2307.2021.03.009
    [11] WU Yanmin, LIU Jiaqi, WANG Lu, et al. Dynamic Reconstruction of Distribution Network Based on Improved Harris Eagle Optimization Algorithm[J]. Science Technology and Engineering, 2024, 24(08): 3251-3259 (吴艳敏, 刘家旗, 王璐, 等. 基于改进哈里斯鹰优化算法的配电网动态重构[J]. 科学技术与工程, 2024, 24(08): 3251-3259

    WU Yanmin, LIU Jiaqi, WANG Lu, et al. Dynamic Reconstruction of Distribution Network Based on Improved Harris Eagle Optimization Algorithm[J]. Science Technology and Engineering, 2024, 24(08): 3251-3259
    [12] HE Guanghuan. Research on the application of ground matching point cloud hole repair based on IHHO-LSSVM[D]. Guilin, Guangxi: Guilin University of Technology, 2023 (何广焕. 基于IHHO-LSSVM的地面匹配点云孔洞修补应用研究[D]. 广西桂林: 桂林理工大学, 2023

    HE Guanghuan. Research on the application of ground matching point cloud hole repair based on IHHO-LSSVM[D]. Guilin, Guangxi: Guilin University of Technology, 2023
    [13] QIAN Jianguo, XU Zhiwen, ZHAO Yuguo, et al. GPS Elevation Fitting Method Based on Improved Whale Algorithm Optimization Neural Network[J]. Journal of Geodesy and Geodynamics, 2024, 44(02): 122-127 (钱建国, 徐志文, 赵玉国, 等. 基于改进鲸鱼算法优化神经网络的GPS高程拟合方法[J]. 大地测量与地球动力学, 2024, 44(02): 122-127 doi: 10.14075/j.jgg.2023.04.188

    QIAN Jianguo, XU Zhiwen, ZHAO Yuguo, et al. GPS Elevation Fitting Method Based on Improved Whale Algorithm Optimization Neural Network[J]. Journal of Geodesy and Geodynamics, 2024, 44(02): 122-127 doi: 10.14075/j.jgg.2023.04.188
    [14] ZHANG Yan. Research on improved Harris Eagle algorithm and its application in intelligent scheduling of air compressors[D]. Chongqing: Chongqing University of Technology, 2024 (张燕. 改进的哈里斯鹰算法及其在空压机智能调度中的应用研究[D]. 重庆: 重庆理工大学, 2024

    ZHANG Yan. Research on improved Harris Eagle algorithm and its application in intelligent scheduling of air compressors[D]. Chongqing: Chongqing University of Technology, 2024
    [15] ZHANG Xiaoli, WANG Qinfei, JI Wenli. An Improved Particle Swarm Optimization Based on Adaptive Inertia Weighting[J]. Microelectronics :Times New Roman;">& Computer, 2019, 36(03): 72-76 (张晓莉, 王秦飞, 冀汶莉. 一种改进的自适应惯性权重的粒子群算法[J]. 微电子学与计算机, 2019, 36(03): 72-76 doi: 10.3969/j.issn.1006-9348.2012.12.067

    ZHANG Xiaoli, WANG Qinfei, JI Wenli. An Improved Particle Swarm Optimization Based on Adaptive Inertia Weighting[J]. Microelectronics & Computer, 2019, 36(03): 72-76 doi: 10.3969/j.issn.1006-9348.2012.12.067
    [16] HE Guanghuan, TANG Shihua, WANG Wenguan, et al. A Method for Calculating Matching Point Cloud Soil and Stone Quantities Based on CSF-WOA-LSSVM[J]. Science Technology and Engineering, 2022, 22(30): 13194-13201 (何广焕, 唐诗华, 王文贯, 等. 一种基于CSF-WOA-LSSVM的匹配点云土石方量计算方法[J]. 科学技术与工程, 2022, 22(30): 13194-13201 doi: 10.3969/j.issn.1671-1815.2022.30.006

    HE Guanghuan, TANG Shihua, WANG Wenguan, et al. A Method for Calculating Matching Point Cloud Soil and Stone Quantities Based on CSF-WOA-LSSVM[J]. Science Technology and Engineering, 2022, 22(30): 13194-13201 doi: 10.3969/j.issn.1671-1815.2022.30.006
    [17] LI Mingfei, WU Junchao, ZHANG Yichi. Application of Combinatorial Model Based on Least Squares Support Vector Machine in Region-Similar Geoid Fitting[J]. Journal of Geodesy and Geodynamics, 2022, 42(09): 971-974 (李明飞, 吴军超, 张一驰. 基于最小二乘支持向量机的组合模型在区域似大地水准面拟合中的应用[J]. 大地测量与地球动力学, 2022, 42(09): 971-974 doi: 10.14075/j.jgg.2022.09.016

    LI Mingfei, WU Junchao, ZHANG Yichi. Application of Combinatorial Model Based on Least Squares Support Vector Machine in Region-Similar Geoid Fitting[J]. Journal of Geodesy and Geodynamics, 2022, 42(09): 971-974 doi: 10.14075/j.jgg.2022.09.016
    [18] LI Cong. Tropospheric delay modeling and prediction of GNSS based on machine learning[D]. Xi'an, Shaanxi: Chang'an University, 2022 (李耸. 基于机器学习的GNSS对流层延迟建模与预报[D]. 西安: 长安大学, 2022

    LI Cong. Tropospheric delay modeling and prediction of GNSS based on machine learning[D]. Xi'an, Shaanxi: Chang'an University, 2022
    [19] YANG Tianyu. GPS elevation fitting based on BP neural network and its application in Hangzhou Bay Bridge[D]. Chengdu, Sichuan: Southwest Jiaotong University, 2006 (杨天宇. 基于BP神经网络的GPS高程拟合及其在杭州湾跨海大桥中的应用[D]. 成都: 西南交通大学, 2006

    YANG Tianyu. GPS elevation fitting based on BP neural network and its application in Hangzhou Bay Bridge[D]. Chengdu, Sichuan: Southwest Jiaotong University, 2006
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  37
  • PDF下载量:  1
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-12-06
  • 修回日期:  2025-03-30
  • 网络出版日期:  2025-03-30

目录

    /

    返回文章
    返回