留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地月空间NRHO两脉冲调相轨道优化与分析

李少峰 王有亮 于锡峥 李明涛

李少峰, 王有亮, 于锡峥, 李明涛. 地月空间NRHO两脉冲调相轨道优化与分析[J]. 空间科学学报. doi: 10.11728/cjss2026.01.2025-0013
引用本文: 李少峰, 王有亮, 于锡峥, 李明涛. 地月空间NRHO两脉冲调相轨道优化与分析[J]. 空间科学学报. doi: 10.11728/cjss2026.01.2025-0013
LI Shaofeng, WANG Youliang, YU Xizheng, LI Mingtao. Optimization and Analysis of NRHO Two-impulsive Phasing Trajectory in Cislunar Space (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-14 doi: 10.11728/cjss2026.01.2025-0013
Citation: LI Shaofeng, WANG Youliang, YU Xizheng, LI Mingtao. Optimization and Analysis of NRHO Two-impulsive Phasing Trajectory in Cislunar Space (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-14 doi: 10.11728/cjss2026.01.2025-0013

地月空间NRHO两脉冲调相轨道优化与分析

doi: 10.11728/cjss2026.01.2025-0013 cstr: 32142.14.cjss.2025-0013
基金项目: 中国科学院青年创新促进会项目资助 (2022146)
详细信息
    作者简介:
    • 李少峰 男, 1999年10月出生于山西省太原市, 现为中国科学院国家空间科学中心攻读硕士研究生. 主要研究方向为航天器轨道动力学与控制. E-mail: 15536050332@163.com
    • 于锡峥 男, 硕士, 副研究员, 硕士研究生导师. 主要研究方向为航天器轨道动力学与控制. E-mail: yuxizheng@nssc.ac.cn
    • 李明涛 男, 博士, 研究员, 博士研究生导师. 主要研究方向为航天器轨道动力学与控制、小行星防御与利用. E-mail: limingtao@nssc.ac.cn
    通讯作者:
    • 王有亮 男, 1990年8月出生于河南省济源市, 现为中国科学院国家空间科学中心副研究员, 硕士研究生导师, 主要研究方向为航天器轨道动力学与控制、分布式空间系统动力学与控制等. E-mail: wangyouliang@nssc.ac.cn
  • 中图分类号: V412.4+1

Optimization and Analysis of NRHO Two-impulsive Phasing Trajectory in Cislunar Space

  • 摘要: Artemis任务建造与运行月球轨道门户空间站期间, 将在近直线晕轨道(Near-Rectilinear Halo Orbit, NRHO)实施大量货运、载人飞行交会对接任务. 针对NRHO调相轨道优化问题, 基于圆型限制性三体问题模型, 通过信赖域算法对转移时间进行遍历, 采用非线性优化算法局部优化来修正位置误差, 进而迭代求解非线性方程组降低速度增量, 实现了低燃料消耗的NRHO调相优化; 针对调相代价问题, 对NRHO上不同转移时间和不同相位关系的调相进行了分析. 结果表明: 该算法计算效率较高, 相较于遗传算法减少了53.2%的计算时间; 转移时间越长(转移轨道圈数越多), 消耗的速度增量越小; 目标航天器相位滞后时, 选择绕NRHO外圈的调相方式更省燃料, 反之, 相位超前则选择绕内圈更省燃料; 追踪航天器从近月点出发时燃料消耗更低.

     

  • 图  1  质心旋转坐标系

    Figure  1.  Barycentric rotating frame

    图  2  NRHO不同轨道族

    Figure  2.  Different orbital family of NRHO

    图  3  两航天器间相位关系

    Figure  3.  Phase relationship between two spacecraft

    图  4  NRHO转移轨道机动场景

    Figure  4.  Maneuver scenario of NRHO transfer trajectory

    图  5  调相轨道优化算法流程

    Figure  5.  Flow diagram of the phasing trajectory optimization algorithm

    图  6  速度增量随转移时间变化

    Figure  6.  Variation of velocity increment with transfer time

    图  7  不同转移时间对应的转移轨道 (红色▲为转移轨道终点)

    Figure  7.  Transfer orbits for different transfer times (Red triangle is the end of the transfer orbit)

    图  8  近月点出发不同相位下的速度增量变化

    Figure  8.  Variation of velocity increment at different phases of perilune departure

    图  9  近月点出发不同相位下的转移时间变化

    Figure  9.  The variation of the transfer time at different phases of the perilune departure

    图  10  正相位差(a)和负相位差(b)的转移轨道(10~14天)

    Figure  10.  Transfer orbits with positive and negative phase differences(10~14 day)

    图  11  正相位差(a)和负相位差(b)的转移轨道(0~10天)

    Figure  11.  Transfer orbits with positive and negative phase differences(0~10 day)

    图  12  远月点出发不同相位下的速度增量变化

    Figure  12.  The variation of velocity Increment at different phases of apolune departure

    图  13  远月点出发不同相位下的转移时间变化

    Figure  13.  The variation of transfer time at different phases of the apolune departure

    图  14  不同相位的转移轨道变化

    Figure  14.  Orbits with different transfer phases

    图  15  不同圈数下的调相轨道

    Figure  15.  Phase orbits under different turns

    图  16  总速度增量与相位关系

    Figure  16.  Total velocity increments at different phase

    表  1  遍历时间的轨道调相优化结果

    Table  1.   Phasing optimization results for traversal time


    目标
    相位/(º)
    遍历时间优化初值 迭代优化结果
    总计算时间/s
    转移时间/day 速度
    增量/(m·s–1)
    计算
    时间
    /s
    转移
    时间/day
    速度
    增量/(m·s–1)
    计算时间
    /s
    –153.09 6.60 238.44 33.62 7.51 189.88 18.35 51.97
    –128.25 6.02 74.45 36.45 6.89 60.80 36.99 73.44
    –93.52 6.00 21.17 26.73 6.71 18.14 45.14 71.87
    –39.07 5.99 1.64 10.71 6.60 1.43 52.27 62.98
    27.46 5.93 9.52 18.22 6.60 8.28 57.79 76.01
    84.60 6.00 25.71 21.06 6.54 23.10 59.83 80.89
    121.99 6.03 65.16 28.22 6.40 61.22 62.50 90.71
    147.59 4.97 216.77 41.97 5.87 199.72 59.43 101.4
    下载: 导出CSV

    表  2  遗传算法的轨道调相优化结果

    Table  2.   Phasing optimization results of GA


    目标
    相位/(º)
    遗传算法优化初值 迭代优化结果
    总计算时间/s
    转移时间/day 速度
    增量/(m·s–1)
    计算
    时间
    /s
    转移
    时间/day
    速度
    增量/(m·s–1)
    计算时间
    /s
    –153.09 6.87 221.15 173.07 7.51 189.88 31.26 204.33
    128.25 6.20 71.44 143.13 6.89 60.80 21.74 164.87
    –93.52 6.10 20.71 132.55 6.71 18.14 25.02 157.57
    –39.07 6.27 1.54 125.64 6.60 1.43 29.31 154.94
    27.46 2.43 21.38 121.75 3.37 15.40 4.54 126.29
    84.60 2.46 56.64 120.94 3.45 40.84 3.43 124.37
    121.99 5.45 72.29 123.05 6.40 61.19 21.69 144.74
    147.59 5.32 209.35 145.13 5.87 199.78 79.87 225.00
    下载: 导出CSV

    表  3  不同圈数下总速度增量ΔV对比

    Table  3.   Comparison of total velocity increment ΔV with different revolutions

    相位差0~1圈

    ΔV/(m·s–1)
    1~2圈
    ΔV/(m·s–1)
    3~4圈
    ΔV/(m·s–1)
    最小ΔV对应
    转移模式
    –180409.32194.00161.00绕外圈
    –153187.7577.2048.06绕外圈
    –12860.1125.8214.37绕外圈
    –9317.909.537.24绕外圈
    –381.321.070.37绕外圈
    5914.486.954.69绕内圈
    10637.4315.419.28绕内圈
    136107.9541.3623.47绕内圈
    159383.55121.3184.52绕内圈
    下载: 导出CSV
  • [1] LEE D E. Gateway Destination Orbit Model: A continuous 15 Year NRHO Reference Trajectory[R]. Houston, Texas: NASA Johnson Space Center White Paper, 2019
    [2] SMITH M, CRAIG D, HERRMANN N, et al. The Artemis program: an overview of NASA's activities to return humans to the moon[C]//2020 IEEE Aerospace Conference. Big Sky: IEEE, 2020: 1-10
    [3] GARDNER T, CHEETHAM B, PARKER J, et al. Capstone: a summary of a highly successful mission in the cislunar environment[C]//37th Annual Small Satellite Conference. Logan: Utah State University, 2023
    [4] QIN Limin, YANG Hongwei, LI Shuang. An efficient design method for long-term quasi-periodic near rectilinear halo orbits[J]. Journal of Astronautics, 2024, 45(1): 43-51 (秦理民, 杨洪伟, 李爽. 长期拟周期近直线晕轨道高效设计方法[J]. 宇航学报, 2024, 45(1): 43-51 doi: 10.3873/j.issn.1000-1328.2024.01.005

    QIN Limin, YANG Hongwei, LI Shuang. An efficient design method for long-term quasi-periodic near rectilinear halo orbits[J]. Journal of Astronautics, 2024, 45(1): 43-51 doi: 10.3873/j.issn.1000-1328.2024.01.005
    [5] BLAZQUEZ E, BEAUREGARD L, LIZY-DESTREZ S, et al. Rendezvous design in a cislunar near rectilinear Halo orbit[J]. The Aeronautical Journal, 2020, 124(1276): 821-837 doi: 10.1017/aer.2019.126
    [6] BUCCHIONI G, INNOCENTI M. Rendezvous in cis-lunar space near rectilinear halo orbit: Dynamics and control issues[J]. Aerospace, 2021, 8(3): 68 doi: 10.3390/aerospace8030068
    [7] FOSSÀ A, BUCCHIONI G, BLAZQUEZ E, et al. Two and three impulses phasing strategy with a spacecraft orbiting on an Earth–Moon NRHO[J]. Acta Astronautica, 2022, 198: 669-679 doi: 10.1016/j.actaastro.2022.06.042
    [8] BUCCHIONI G, LIZY-DESTREZ S, VAUJOUR T, et al. Phasing with near rectilinear Halo orbits: Design and comparison[J]. Advances in Space Research, 2022, 71(5): 2449-2466 doi: 10.1016/j.asr.2022.10.036
    [9] XIE Y C, CHEN C Q, LI X Y, et al. A guidance strategy for rendezvous and docking to the space station in the Earth-Moon NRHO orbit[J]. Chinese Space Science and Technology, 2024, 44(4): 29-39
    [10] SUN Yu, ZHANG Jin, LUO Yazhong. Rendezvous trajectory design of libration points based on three-body lambert algorithm[J]. Manned Spaceflight, 2017, 23(5): 608-613 (孙俞, 张进, 罗亚中. 基于三体Lambert算法的平动点交会轨道设计[J]. 载人航天, 2017, 23(5): 608-613 doi: 10.3969/j.issn.1674-5825.2017.05.006

    SUN Yu, ZHANG Jin, LUO Yazhong. Rendezvous trajectory design of libration points based on three-body lambert algorithm[J]. Manned Spaceflight, 2017, 23(5): 608-613 doi: 10.3969/j.issn.1674-5825.2017.05.006
    [11] ZHOU J. Studies on Dynamics and Control of Orbit Transfer of Spacecraft Near the Libration Points[D]. Beijing: China Academy of Space Technology, 2021 (周敬. 平动点航天器轨道交会动力学与控制研究[D]. 北京: 中国空间技术研究院, 2021

    ZHOU J. Studies on Dynamics and Control of Orbit Transfer of Spacecraft Near the Libration Points[D]. Beijing: China Academy of Space Technology, 2021
    [12] FU H L, WANG M, ZHANG H. Phasing analysis on DRO with impulsive maneuver[J]. Frontiers in Astronomy and Space Sciences, 2023, 10: 1177573 doi: 10.3389/fspas.2023.1177573
    [13] DONG Bowen, YU Xizheng, LI Mingtao, et al. Orbit design optimization method for an asteroid flyby mission from DRO[J]. Chinese Journal of Space Science, 2023, 43(5): 864-874 (董博文, 于锡峥, 李明涛, 等. 基于DRO的小行星往返飞越探测轨道设计优化方法[J]. 空间科学学报, 2023, 43(5): 864-874 doi: 10.11728/cjss2023.05.2023-0011

    DONG Bowen, YU Xizheng, LI Mingtao, et al. Orbit design optimization method for an asteroid flyby mission from DRO[J]. Chinese Journal of Space Science, 2023, 43(5): 864-874 doi: 10.11728/cjss2023.05.2023-0011
    [14] WANG K D, WANG Y L, DONG B W, et al. Trajectory optimization of near-Earth asteroids exploration by using reusable probes from cislunar space[J]. Chinese Journal of Aeronautics, 2025, 38(3): 103234 doi: 10.1016/j.cja.2024.09.010
    [15] ESTY C C, LEE D, MARTINEZ R, et al. Assessment of Cislunar Staging Orbits to Support the Artemis III Lunar Surface Mission[C]//45th Annual AAS Guidance, Navigation and Control (GN&C) Conference. Springfield: American Astronautical Soc. , 2023
    [16] MORÉ J J, GARBOW B S, HILLSTROM K E. User Guide for MINPACK-1[R]. Argonne: Argonne National Lab, 1980
    [17] BYRD R H, SCHNABEL R B, SHULTZ G A. Approximate solution of the trust region problem by minimization over two-dimensional subspaces[J]. Mathematical Programming, 1988, 40(1): 247-263 doi: 10.21236/ada176527
    [18] WALTZ R A, MORALES J L, NOCEDAL J, et al. An interior algorithm for nonlinear optimization that combines line search and trust region steps[J]. Mathematical Programming, 2006, 107(3): 391-408 doi: 10.1007/s10107-004-0560-5
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  504
  • HTML全文浏览量:  44
  • PDF下载量:  22
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2025-01-13
  • 修回日期:  2025-04-01
  • 网络出版日期:  2025-04-02

目录

    /

    返回文章
    返回