留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印高温钛水热管的传热性能实验和仿真

王慧志 卢帅婷 郭元东 黄金印 苗建印 林贵平

王慧志, 卢帅婷, 郭元东, 黄金印, 苗建印, 林贵平. 3D打印高温钛水热管的传热性能实验和仿真[J]. 空间科学学报. doi: 10.11728/cjss2026.01.2025-0145
引用本文: 王慧志, 卢帅婷, 郭元东, 黄金印, 苗建印, 林贵平. 3D打印高温钛水热管的传热性能实验和仿真[J]. 空间科学学报. doi: 10.11728/cjss2026.01.2025-0145
WANG Huizhi, LU Shuaiting, GUO Yuandong, HUANG Jinyin, MIAO Jianyin, LIN Guiping. Experiments and Simulations on 3D Printed High Temperature Titanium Water Heat Pipe (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-8 doi: 10.11728/cjss2026.01.2025-0145
Citation: WANG Huizhi, LU Shuaiting, GUO Yuandong, HUANG Jinyin, MIAO Jianyin, LIN Guiping. Experiments and Simulations on 3D Printed High Temperature Titanium Water Heat Pipe (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-8 doi: 10.11728/cjss2026.01.2025-0145

3D打印高温钛水热管的传热性能实验和仿真

doi: 10.11728/cjss2026.01.2025-0145 cstr: 32142.14.cjss.2025-0145
基金项目: 国家自然科学基金项目(52472443), 中国科协青年人才托举工程项目(2023QNRC001)和航天器热控技术全国重点实验室开放基金项目(NKLST-JJ-202401007)共同资助
详细信息
    作者简介:
    • 王慧志 男, 1992年4月出生于河南省周口市, 现为北京空间飞行器总体设计部高级工程师, 主要研究方向为航天器热控技术. E-mail: wanghuizhi@cast.com
    通讯作者:
    • 郭元东 男, 1992年6月出生于河北省邢台市. 现为北京航空航天大学航空科学与工程学院副教授, 博士生导师, 主要研究方向为航空航天器热管理、热管、流动沸腾传热技术. E-mail: guoyd@buaa.edu.cn
  • 中图分类号: V476.2

Experiments and Simulations on 3D Printed High Temperature Titanium Water Heat Pipe

  • 摘要: 未来星际航行对高温工况下的废热排散提出了更高的要求. 当前辐射器设计越来越依赖热管, 高温环境下具有高导热性的钛水热管, 可以有效传递热量, 并且最大限度缩减辐射器的面积. 本文针对3D打印的钛水热管进行了传热性能实验与仿真研究. 在100~225℃的工作温度范围内, 通过向热管施加不同的加热功率, 研究钛水热管的传热能力. 实验结果表明, 钛水热管的最大传热温差随加热功率的增大而增加, 钛水热管在200℃时最大传热功率为893.9 W. 在实验测试的基础上开展仿真研究, 得到钛水热管的等效换热系数随温度的变化规律, 并预测250℃下其等效换热系数为3650 W·m–2·K–1), 传热温差为29.22℃.

     

  • 图  1  钛水热管性能实验台

    Figure  1.  Titanium water heat pipe performance experimental setup

    图  2  钛水热管上温度测点的分布

    Figure  2.  Distribution diagram of temperature measuring points on titanium water heat pipe

    图  3  不同温度下钛水热管的最大传热温差ΔTmax随实际加热功率Q的变化

    Figure  3.  Maximum heat transfer temperature difference ΔTmax of titanium water heat pipe varied with the actual heating power Q at different temperatures

    图  4  不同温度下钛水热管的热阻R随实际加热功率Q的变化

    Figure  4.  Thermal resistance R of titanium water heat pipe varied with the actual heating power Q at different temperatures

    图  5  水工质Dunbar因数随温度的变化

    Figure  5.  Variation of Dunbar factor of water with temperature

    图  6  钛水热管仿真几何模型

    Figure  6.  Geometric simulation model of titanium water heat pipe

    图  7  实验与仿真所得的热管最大传热温差

    Figure  7.  Maximum heat transfer temperature difference of the heat pipe obtained from experiments and simulations

    图  8  仿真中等效换热系数随热管工作温度变化情况

    Figure  8.  Variation of equivalent heat transfer coefficient with the working temperature of the heat pipe in simulation

    图  9  钛水热管仿真结果(250℃, 800 W)

    Figure  9.  Simulation results of titanium water heat pipe (250℃, 800 W)

    表  1  钛水热管性能实验工况

    Table  1.   Experimental conditions for performance of titanium water heat pipes

    绝热段温度/℃加热功率/W
    100200, 300, 400, 500
    125300, 400, 500, 600
    150500, 600, 700, 800
    175700, 800, 900
    200850, 900
    225700, 800, 850
    下载: 导出CSV
  • [1] ZHANG Ze, XUE Xiang, WANG Yuanding, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13 (张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13

    ZHANG Ze, XUE Xiang, WANG Yuanding, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13
    [2] LEE K L, ANDERSON W G, TARAU C. Titanium-water heat pipe radiators for kilopower system cooling applications[C]//International Energy Conversion Engineering Conference. Cincinnati, Ohio: AIAA, 2018
    [3] Lee K L , Tarau C , Anderson W G , et al. Titanium-Water Heat Pipe Radiators for Space Fission Power System Thermal Management[J]. Microgravity Science and Technology, 2020, 32(3). DOI: 10.1007/s12217-020-09780-5
    [4] CHEN Jie, GAO Shaolun, XIA Chenchao, et al. Study on space nuclear power technological option[J]. Aerospace Shanghai, 2019, 36(6): 1-10 (陈杰, 高劭伦, 夏陈超, 等. 空间堆核动力技术选择研究[J]. 上海航天, 2019, 36(6): 1-10 doi: 10.19328/j.cnki.1006-1630.2019.06.001

    CHEN Jie, GAO Shaolun, XIA Chenchao, et al. Study on space nuclear power technological option[J]. Aerospace Shanghai, 2019, 36(6): 1-10 doi: 10.19328/j.cnki.1006-1630.2019.06.001
    [5] WANG Zhao, XIA Chenchao, KANG Zhiyu, et al. Design and key technologies of modular nuclear powered spacecrafts[J]. Aerospace Shanghai, 2019, 36(6): 141-147 (王钊, 夏陈超, 康志宇, 等. 模块化核动力航天器设计及其关键技术[J]. 上海航天, 2019, 36(6): 141-147 doi: 10.19328/j.cnki.1006-1630.2019.06.020

    WANG Zhao, XIA Chenchao, KANG Zhiyu, et al. Design and key technologies of modular nuclear powered spacecrafts[J]. Aerospace Shanghai, 2019, 36(6): 141-147 doi: 10.19328/j.cnki.1006-1630.2019.06.020
    [6] ZHOU Tao. Research on Design Optimization Technology of Loop Heat Pipe Radiator in Space Reactor[D]. Harbin: Harbin Engineering University, 2023 (周涛. 空间堆环路热管辐射散热器设计优化技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2023

    ZHOU Tao. Research on Design Optimization Technology of Loop Heat Pipe Radiator in Space Reactor[D]. Harbin: Harbin Engineering University, 2023
    [7] HAINLEY D C. User's Manual for the Heat Pipe Space Radiator Design and Analysis Code (HEPSPARC)[R]. Brook Park: NASA Lewis Research Center Group, 1991
    [8] GROVER G M, COTTER T P, ERICKSON G F. Erratum: structures of very high thermal conductance[J]. Journal of Applied Physics, 1964, 35(10): 3072-3072 doi: 10.1063/1.1713185
    [9] ENKE C, JÚNIOR J B, VLASSOV V. Transient response of an axially-grooved aluminum-ammonia heat pipe with the presence of non-condensable gas[J]. Applied Thermal Engineering, 2021, 183: 116135 doi: 10.1016/j.applthermaleng.2020.116135
    [10] ANDERSON W G, BIENERT W. Loop heat pipe radiator trade study for the 300-550 K temperature range[J]. AIP Conference Proceedings, 2005, 746(1): 946-953
    [11] SANZI J L, JAWORSKE D A. Heat Pipes and Heat Rejection Component Testing at NASA Glenn Research Center[R]. Cleveland: Glenn Research Center, 2012
    [12] ROSENFELD J H, GERNERT N J. Advances in high temperature titanium-water heat pipe technology[J]. AIP Conference Proceedings, 2007, 880(1): 129-136 doi: 10.1063/1.2437449
    [13] ROSENFELD J H, GERNERT N J. Life test results for water heat pipes operating at 200 ℃ to 300 ℃[J]. AIP Conference Proceedings, 2008, 969(1): 123-130 doi: 10.1063/1.2844957
    [14] FENG Maolong, LAI Xiaoyi, HAN Haiying et al. Study on radiation performance of fluid loop-heat pipe coupled radiator for China space station[J]. Aerospace Shanghai (Chinese :Times New Roman;">& English), 2023, 40(5): 88-93 (丰茂龙, 来霄毅, 韩海鹰, 等. 空间站流体回路/热管耦合式热辐射器性能研究[J]. 上海航天(中英文), 2023, 40(5): 88-93 doi: 10.19328/j.cnki.2096-8655.2023.05.012

    FENG Maolong, LAI Xiaoyi, HAN Haiying et al. Study on radiation performance of fluid loop-heat pipe coupled radiator for China space station[J]. Aerospace Shanghai (Chinese & English), 2023, 40(5): 88-93 doi: 10.19328/j.cnki.2096-8655.2023.05.012
    [15] ZHANG Xiu, ZHANG Haochun, LIU Xiuting, et al. Thermal analysis and parameter optimization of a heat-pipe radiator for space nuclear power[J]. Journal of Astronautics, 2019, 40(4): 452-458 (张秀, 张昊春, 刘秀婷, 等. 空间核电源热管式辐射散热器热分析与参数优化[J]. 宇航学报, 2019, 40(4): 452-458

    ZHANG Xiu, ZHANG Haochun, LIU Xiuting, et al. Thermal analysis and parameter optimization of a heat-pipe radiator for space nuclear power[J]. Journal of Astronautics, 2019, 40(4): 452-458
    [16] BEARD D, ANDERSON W G, TARAU C, et al. High temperature water heat pipes for kilopower system[C]//15th International Energy Conversion Engineering Conference. Atlanta: AIAA, 2017
    [17] LEE K L, KADAMBI J R, KAMOTANI Y. The influence of non-condensable gas on an integral planar heat pipe radiators for space applications[J]. International Journal of Heat and Mass Transfer, 2017, 110: 496-505 doi: 10.1016/j.ijheatmasstransfer.2017.03.060
    [18] ZHOU Qiang, WANG Lu, LIU Chang, et al. Design and verification of 3D printing titanium-water heat pipe used in high power spacecraft[J]. Spacecraft Engineering, 2020, 29(4): 86-92 (周强, 王录, 刘畅, 等. 用于大功率航天器的3D打印钛水热管设计及试验研究[J]. 航天器工程, 2020, 29(4): 86-92 doi: 10.3969/j.issn.1673-8748.2020.04.013

    ZHOU Qiang, WANG Lu, LIU Chang, et al. Design and verification of 3D printing titanium-water heat pipe used in high power spacecraft[J]. Spacecraft Engineering, 2020, 29(4): 86-92 doi: 10.3969/j.issn.1673-8748.2020.04.013
    [19] FLEMING A J, THOMAS S K, YERKES K L. Titanium-water loop heat pipe operating characteristics under standard and elevated acceleration fields[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(1): 184-198 doi: 10.2514/1.45684
    [20] TIAN Zhixing, LIU Xiao, WANG Chenglong, et al. Study on heat transfer performance of high temperature potassium heat pipe at steady state[J]. Atomic Energy Science and Technology, 2020, 54(10): 1771-1778 (田智星, 刘逍, 王成龙, 等. 高温钾热管稳态运行传热特性研究[J]. 原子能科学技术, 2020, 54(10): 1771-1778

    TIAN Zhixing, LIU Xiao, WANG Chenglong, et al. Study on heat transfer performance of high temperature potassium heat pipe at steady state[J]. Atomic Energy Science and Technology, 2020, 54(10): 1771-1778
    [21] DUNBAR N, CADELL P. Working fluids and figure of merit for CPL/LHP applications[C]//CPL-98 Workshop. El Segundo: The Aerospace Corporation, 1998
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  29
  • PDF下载量:  7
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2025-08-05
  • 修回日期:  2025-11-12
  • 网络出版日期:  2025-12-17

目录

    /

    返回文章
    返回