The relation of energy flux increment in downstream of a MHD shock relative to the upstream are deduced, and the radial evolution of the parameters of the solar wind in different flow speed is given in the form of power-law from the data observed by spacecrafts Helios A, B. Using above power-law of solar wind parameters as the upstream medium parameters of a shock, the rate of energy deposition dE/dR of the shock at different heliocentric distances for magnetic energy, internal energy. kinetic energy and the total energy are computed respectively. The result shows that across a MHD fast shock the increment of kinetic energy is the most important, next is the internal energy and the magnetic energy is the least; the rate of total energy deposition is larger near the sun, but its decreasing is faster. The total energy deposition increases with the initial shock Alfven number A
10 in the range of0.3-1.0 AU, and the computed values are agreeable with the observed.