There are 78 solar proton events produced in the period from 1997 to 2003. 19 of the total 78 solar proton events haven’t definite source location. In this paper, the Carrington longitude distribution of source location for 59 solar proton events with definite location on the solar surface during 1997-2003 is studied. The results show that the source locations of solar proton events are mainly concentrated in four Carrington longitude bands, namely 10°-453, 135°-155°, 1803-215°, 230°-260°, 265°-310°, 345°-360°. The strongest Carrington longitude band of solar proton event is 265°-310° with 17 solar proton events occurring in the band. The strongest Carrington longitude is 272° with 7 solar proton events occurring on this Carrington longitude. The peak flux for three solar events of the seven solar proton events are over 10000pfu. The known active region 9077 and active region 10486 are located at the Carrington longitude 309° and 283°, respectively. The second strongest Carrington longitude band ranges from 135° to 155°. The Carrington longitude bands 10°-45° and 345°-360° are two moderate strong Carrington longitude bands. There are 28 solar proton events with peak flux over 100 pfu in total during the period from 1997 to 2003. Ten of them occurred in the north hemisphere of the Sun, eighteen of them produced in the southern hemisphere of the Sun. The solar proton events have recurrent law for the same active longitude, the recurrent time gap ranges from several days, 27-day to more than 4-year. Also we find that the solar proton events occurred in two hemispheres by turn for the same active longitude. Because the law of recurrent of the solar proton events not only in time but also in physics is still not very clearly, so that the short term and medium-term prediction of solar proton event are still waited for being solved.