Volume 33 Issue 1
Jan.  2013
Turn off MathJax
Article Contents
Li Caiyun, Huang Wengeng. Equatorial ionosphere Rayleigh-Taylor instability in the presence of double-ion species[J]. Chinese Journal of Space Science, 2013, 33(1): 34-38. doi: 10.11728/cjss2013.01.034
Citation: Li Caiyun, Huang Wengeng. Equatorial ionosphere Rayleigh-Taylor instability in the presence of double-ion species[J]. Chinese Journal of Space Science, 2013, 33(1): 34-38. doi: 10.11728/cjss2013.01.034

Equatorial ionosphere Rayleigh-Taylor instability in the presence of double-ion species

doi: 10.11728/cjss2013.01.034 cstr: 32142.14.cjss2013.01.034
  • Received Date: 2011-09-06
  • Rev Recd Date: 2012-11-28
  • Publish Date: 2013-01-15
  • Plasma Rayleigh-Taylor instability plays a crucial role in the development of irregularities in the nocturnal equatorial ionosphere. In traditional theories, only the dominant element O+ is taken into consideration. As a result, the liner equation is independent with the ion mass and density. In fact, in some cases, there are not only one kind of positive ion in the F region of the ionosphere, such as in dusty plasma or in the ionospheric disturbances resulting from artificially chemical releases. It is essential to understand the effect of molecular ions in the collisional Rayleigh-Taylor instability. In this paper, a linear perturbation analysis associated with continuity equations, momentum equations and current conservation equation has been used to obtain a growth rate expression in the presence of double-ion species. The new expression reveals that the growth rate is dependent with the number densities and masses of both the ion elements, and especially, the proportions of the two kinds of ions contribute to growth rate.

     

  • loading
  • [1]
    Groves K M, Basu S, Weber E J, et al. Equatorial scintillation and systems support[J]. Radio Sci., 1997, 32:2047-2064
    [2]
    Farley D T, Balsley B B, Woodman R F, et al. Equatorial spread F implication of VHF radar observations[J]. J. Geophys. Res., 1970, 75(34):7199-7216
    [3]
    Ossakow S L. Spread-F theories--A review[J]. J. Atmos. Terr. Phys., 1981, 43:437-443
    [4]
    Chaturvedi P K, Ossakow S L. Nonlinear theory of the collisional Rayleigh-Taylor instability in equatorial spread F[J]. Geophys. Res. Lett., 1977, 4:558-561
    [5]
    Hanson W B, Cragin B L, Dennis A. The effect of vertical drift on the equatorial F region region stability[J]. J. Atmos. Terr. Phys., 1986, 48:205
    [6]
    Huang C C, Kelly M C. Nonlinear evolution of equatorial spread F:gravity wave seeding of Rayleigh-Taylor instability[J]. J. Geophys. Res., 1996, 101:293
    [7]
    Sekar R, Raghavarao R. Role of vertical winds on the Rayleigh-Taylor mode instabilities of the nighttime equatorial ionosphere[J]. J. Atmos. Terr. Phys., 1987, 49:981
    [8]
    Zalesak S T, Ossakow S L, Chaturvedi P K. Nonlinear equatorial spread-F: The effect of neutral winds background Pedersen conductivity[J]. J. Geophys. Res., 1982, 87:151-166
    [9]
    Woodman R F. Vertical drift velocities and east-west electric fields at the magnetic equator[J]. J. Geophys. Res., 1970, 75:6249
    [10]
    Chiu Y T, Straus J M. Rayleigh-Taylor and wind driven instabilities of the night-time equatorial ionosphere[J]. J. Geophys. Res. 1979, 84:3283
    [11]
    Sekar R, Kelley M C. On the combined effects of vertical shear and zonal electric field patterns on nonlinear equatorial spread F evolution[J]. J. Geophys. Res., 1998, 103:20735-20747
    [12]
    Anderson D N, Rusch D W. Composition of the night-time ionospheric F1 region near the magnetic equator[J]. J. Geophys. Res., 1980, 85:569
    [13]
    Sekar R, Kherani E A. Effects of molecular ions on the Rayleigh-Taylor instability in the night-time equatorial ionosphere[J]. J. Atmos. Solar-Terr. Phys., 1999, 61:399
    [14]
    Ossakow S L, Zalesak S T, Zalesak B E. Nonlinear equatorial spread F: dependence on altitude of the F peak and bottomside background electron density gradient scale length[J]. J. Geophys. Res., 1979, 84:17-29
    [15]
    Ossakow S L, Zalesak S T, Chaturvedi P K. Nonlinear equatorial spread F: The effects of neutral winds and background Pedersen conductivity[J]. J. Geophys. Res., 1982, 87:151-166
    [16]
    Narcisi R S, Szuszczewicz E P. Direct measurements of electron density, temperature and ion composition in an equatorial spread F ionosphere[J]. J. Atmos. Terr. Phys., 1981, 43:463
    [17]
    Luo Weihua, Xu Jisheng, Xu Liang. Analysis of controlling factors leading to the development of R-T instability in equatorial ionosphere[J]. Chin. J. Geophys., 2009, 52(4): 849-858. In Chinese (罗伟华, 徐继生, 徐良. 赤道电离层R-T不稳定性 发展的控制因素分析[J]. 地球物理学报, 2009, 52(4):849-858)
    [18]
    Szuszczewicz E P. Tsunoda R T, Narcisi R, Holmes J C. Coincident radar and rocket observations of equatorial spread-F[J]. Geophys. Res. Lett., 1980, 7:537
    [19]
    Xie Hong, Xiao Zuo. Numerical simulation of spread F in low and mid-latitudes[J]. Chin. J. Geophys., 1993, 36(1):18-26. In Chinese (谢红, 肖佐. 中低纬Spread F的数值模拟[J]. 地球物理学报, 1993, 36(1):18-26)
    [20]
    Fukuyama A, Sen S, Honary F. Unstable Rayleigh-Taylor modes in the ionosphere in the presence of dusts[J]. Rad. Effects Defects Solids, 2010, 165:123-133
    [21]
    Huang Wengeng, Gu Shifen. Ionospheric disturbances produced by artificially chemical releases[J]. Chin. J. Space Sci., 2005, 25(4):254-258. In Chinese (黄文耿, 古士芬. 化学物质释放人工改变电离层[J]. 空间 科学学报, 2005, 25(4):254-258)
    [22]
    Choueiri E Y, Oraevsky V N, Dokukin V S, et al. Observations and modeling of neutral gas releases from the APEX satellite[J]. J. Geophys. Res., 2001, 106:25673
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(3018) PDF Downloads(1058) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return