Volume 33 Issue 3
May  2013
Turn off MathJax
Article Contents
Zhang Yu, Hu Chunxiang, Zhang Delu. Effect of clinorotation on cellular structure, photosynthetic activity, carbohydrate and astaxanthin metabolism of Haematococcus pluvialis[J]. Chinese Journal of Space Science, 2013, 33(3): 293-301. doi: 10.11728/cjss2013.03.293
Citation: Zhang Yu, Hu Chunxiang, Zhang Delu. Effect of clinorotation on cellular structure, photosynthetic activity, carbohydrate and astaxanthin metabolism of Haematococcus pluvialis[J]. Chinese Journal of Space Science, 2013, 33(3): 293-301. doi: 10.11728/cjss2013.03.293

Effect of clinorotation on cellular structure, photosynthetic activity, carbohydrate and astaxanthin metabolism of Haematococcus pluvialis

doi: 10.11728/cjss2013.03.293 cstr: 32142.14.cjss2013.03.293
  • Received Date: 2012-02-17
  • Rev Recd Date: 2012-10-15
  • Publish Date: 2013-05-15
  • During 20 days of simulated microgravity using clinostat (two-dimensional), the cellular structure, photosynthetic activity, primary and secondary metabolism of Haematococcus pluvialis were investigated. Results showed that the cell shape appeared abnormal and the volume became smaller than the ground control's. Ultrastructure analysis revealed that the starch grains seemed smaller and the thylakoid membranes were more randomly distributed and loosened after 20 days of clinorotation. Chlorophyll content decreased during the early period of clinorotation, but increased in the late phase. Carotenoid content and photosystem II efficiency decreased during the whole clinorotation. It could be presumed that the decreased photosynthetic efficiency might have some relation with the decreased pigment synthesis and the structure changes that happened on chloroplast after clinorotation. The smaller starch grains, together with the decreased starch content were probably due to an increased hydrolysis of amylase during clinorotation. The increased sucrose and trehalose played a protective role in the accommodation to early clinorotation. However, this led to a decrease of glucose and fructose utilized for the synthesis of protective disaccharides. In the middle phase of clinorotation (i.e. the acclimation period), a compensatory synthesis of chlorophyll, glucose and fructose was observed, whereas synthesis of sucrose and trehalose reduced. The decreased astaxanthin production during the whole clinorotation was due to the depressed carotenoid participating in the astaxanthin synthetic pathway.

     

  • loading
  • [1]
    Hu Zhangli, Liu Yongding. Cell responses of Dunaliella salina} FACHB 435 (Green Alga) to microgravitational simulation by clinorotation[J]. Chin. Sci. Bull., 1998, 43(16):1750-1754. In Chinese (胡章立, 刘永定. 盐生杜氏藻细胞对回转器模拟微重力刺激的反应[J]. 科学通报, 1998, 43(16):1750-1754)
    [2]
    Chen Haofeng, Song Lirong, Liu Yongding, et al. Effect of spaceflight on the population increase and physiological features of microalga Anabaena siamensis[J]. Chin. J. Space Sci., 1997, 17:67-72. In Chinese (陈浩峰, 宋立荣, 刘永定, 等. 空间环境对微藻种群增长及其生理特性的影响[J]. 空间科学学报, 1997, 17:67-72)
    [3]
    Li Genbao Wang Gaohong, Song Lirong, et al. Lipid peroxidation in microalgae cells under simulated microgravity[J]. Space Med. Med. Eng., 2002, 15(4):270-272. In Chinese (李根保, 王高鸿, 宋立荣, 等. 模拟微重力下微藻细胞的脂质过氧化[J]. 航天医学与医学工程, 2002, 15(4):270-272)
    [4]
    Li Genbao, Liu Yongding, Wang Gaohong, et al. Reactive oxygen species and antioxidant enzymes activity of Anabaena} sp. PCC 7120 (Cyanobacterium) under simulated microgravity[J]. Acta Astron., 2004, 55:953-957
    [5]
    Liu Yongding, Lin Huiming, Dai Lingfen, et al. Effects of space-flight by retrievable satellite on Anabaena and Chlorella[J]. Chin. Sci. Bull., 1993, 38(2):177-180. In Chinese (刘永定, 林惠民, 戴玲芬, 等. 返地卫星搭载对鱼腥藻和小球藻的影响[J]. 科学通报, 1993, 38(2):177-180)
    [6]
    Popova A F. Structural changes of chloroplasts and galactolipid contents in Chlorella cells during clinorotation[J]. Tsitol. Genet, 2006, 40(2):39-43
    [7]
    Moleshko G I, Anton'yan A A, Sycheyev V N, et al. The effects of space flight factors on the pigment system of one-celled algae[J]. USSR Space Life Sci. Digest., 1991, 31:43-45
    [8]
    Wang Gaohong, Chen Lanzhou, Hu Chunxiang, et al. Studies on effects of spaceflight and irradiation on photosynthetic system of microalgae[J]. Med. Med. Eng., 2005, 18}(6):437-441. In Chinese (王高鸿, 陈兰州, 胡春香, 等. 空间飞行和辐射对微藻光合系统影响的观察[J]. 航天医学与医学工程, 2005, 18(6):437-441)
    [9]
    Sytnik K M, Popova A F, Nechitailo G S, et al. Peculiarities of the submicroscopic organization of Chlorella cells cultivated on a solid medium in microgravity[J]. Adv. Space Res., 1992, 12(1):103-107
    [10]
    Kordyum E L, Adamchuk N I. Clinorotation affects the state of photosynthetic membranes in Arabidopsis thaliana (L.) Heynh[J]. J. Grav. Physiol., 1997, 4:7-78
    [11]
    Xiao Y, Liu Y, Wang G, et al. Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa} (cyanophyta)[J]. Toxicon, 2010, 56}:1-7
    [12]
    Musgrave M E, Kuang A, Tuominen L K, et al. Seed storage reserves and glucosinolates in Brassica rapa L. grown on the international space station[J]. J. Am. Soc. Hortic Sci., 2005, 130(6):848-856
    [13]
    Lababpour A, Hada K, Shimahara K, et al. Effects of nutrient supply methods and illumination with blue light emitting diodes (LEDs) on astaxanthin production by Haematococcus pluvialis[J]. J. Biosci. Bioeng., 2004, 98}(6):452-456
    [14]
    Van Loon J J W A. Some history and use of the random positioning machine, RPM, in gravity related research[J]. Adv. Space Res}., 2007, 39:1161-1165
    [15]
    Watson M L. Staining of tissue sections for electron microscopy with heavy metals[J]. J. Biophys. Biochem. Cytol., 1958, 4:475-478
    [16]
    Reynolds E S. The use of lead citrate at high pH as an electron opaque stain in electron microscopy[J]. J. Cell Biol., 1963, 17:208-212
    [17]
    Li Hesheng. Experiment Principle and Technology of Plant Physiology and Biochemistry[M]. Beijing: High Education Press, 2000. 194-197. In Chinese (李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. 194-197)
    [18]
    Tang Zhangcheng. Experimental Handbook of Modern Plant Physiology[M]. Beijing: Science Publishing Company, 1999. 127-128. In Chinese (汤章城. 现代植物生理学实验指南[M]. 北京: 科学出版社, 1999. 127-128)
    [19]
    Lillie S H, Ringle J R. Reserved carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation[J]. J. Bacteriol., 1980, 143(3):1384-1394
    [20]
    Tan Haigang, Mei Yingjie, Guan Fengmei, et al. Determination of trehalose content by anthrone-sulphuric acid colorimetric method[J]. Modern Food Sci. Tech., 2006, 22(1):125-128. In Chinese(谭海刚, 梅英杰, 关凤梅, 等. 蒽酮-硫酸法测定酵母中海藻糖的含量[J]. 现代食品科技, 2006, 22}(1):125-128)
    [21]
    Xu Changjie, Chen Wenjun, Chen Kunsong, et al. A simple method for determining the content of starch-iodine colorimetry[J]. Biotechnology, 1998, 8(2):41-43. In Chinese (徐昌杰, 陈文峻, 陈昆松, 等. 淀粉含量测定的一种简便方法碘染色法[J]. 生物技术, 1998, 8}(2):41-43)
    [22]
    Boussiba S, Vonshak A. Astaxanthin accumulation in the green alga Haematococcus Pluvialis[J]. Plant Cell Physiol., 1991, 32:1077-1082
    [23]
    Stutte G W, Monje O, Hatfield R D, et al. Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat[J]. Planta, 2006, 224:1038-1049
    [24]
    Miyamoto K, Yuda T, Shimazu T, et al. Leaf senescence under various gravity conditions: relevance to the dynamics of plant hormones[J]. Adv. Space Res., 2001, 27}(5):1017-1022
    [25]
    Jagtap S S, Awhad R B, Santosh B, et al. Effects of clinorotation on growth and chlorophyll content of rice seeds[J]. Micrograv. Sci. Tech., 2011, 23(1):41-48
    [26]
    Rumyantseva M N, Merzlyak M N, Mashinskiy A L, et al. Effect of space flight factors on the pigment and lipid composition of wheat plants[J]. Kosm. Biol. Aviakosm. Med., 1990, 24:53-56
    [27]
    Abilov Z K, Alekperov U K, Mashinskiy A L, et al. The morphological and functional state of the photosynthetic system of plant cells grown for varying periods under space flight conditions[J]. USSR Space Life Sci. Digest., 1986, 8}:15-18
    [28]
    Aliyev A A, Abilove Z K, Mashinskiy A L, et al. The ultrastructure and physiological characteristics of the photosynthesis system of shoots of garden peas grown for 29 days on the "Salyut-7" space station[J]. USSR Space Life Sci. Digest., 1987, 10:15-16
    [29]
    Zhao G Q, Ma B L, Ren C Z. Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity[J]. Crop Sci. Soc. Am., 2007, 47:123-131
    [30]
    Yamada M, Takeuchi Y, Kasahara H, et al. Plant growth under clinostat-microgravity condition[J]. Biol. Sci. Space, 1993, 7(2):116-119
    [31]
    Brown C S, Piastuch W C. Starch metabolism in germinating soybean cotyledons is sensitive to clinorotation and centrifugation[J]. Plant Cell Environ., 1994, 17: 341-344
    [32]
    Popova A F, Sytnik K M, Kordyum E L. Ultrastructural and growth indices of Chlorella culture in multicomponent aquatic system under space flight conditions[J]. J. Adv. Space Res., 1989, 9(11):79-82
    [33]
    Mortley D G, Bonsi C K, Hill W A, et al. Influence of microgravity environment on root growth, soluble sugars, and starch concentration of sweet potato stem cuttings[J]. J. Am. Soc. Hortic Sci., 2008, 133(3):327-332
    [34]
    Jiao S, Hilaire E, Paulsen A Q, et al. Brassica rapa} plants adapted to microgravity with reduced photosystem I and its photochemical activity[J]. Physiol. Plant., 2004, 122(2):281-290
    [35]
    Kochubey S M, Adamchuk N I, Kordyum E I, et al. Microgravity affects the photosynthetic apparatus of Brassica rapa L[J]. Plant Biosyst., 2004, 138(1):1-9
    [36]
    Cook M E, Croxdale J G. Ultrastructure of potato tubers formed in microgravity under controlled environmental conditions[J]. J. Exp. Bot., 2003, 54(390):2157-2164
    [37]
    Croxdale J M, Cook M E, Tibbitts T W, et al. Structure of potato tubers formed during spaceflight[J]. J. Exp. Bot., 1997, 48:2037-2043
    [38]
    Vaughn M W, Harrington G N, Bush D R. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem[J]. PNAS, 2002, 99(16):10876-10880
    [39]
    Leslie S B, Israeli E, Lighthart B, et al. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying[J]. Appl. Enviro. Microbiol., 1995, 61(10):3592-3597
    [40]
    Reed R H, Richardson D L, Warr S L, et al. Carbohydrate accumulation and osmotic stress in cyanobacteria[J]. J. Gen. Microbiol., 1984, 130:5-25
    [41]
    Strom A R, Kaasen I. Trehalose metabolism in Escherichia coli}: stress protection and stress regulation of gene expression[J]. Mol. Microbiol., 1993, 8:205-210
    [42]
    Brown R, Klaus D, Todd P. Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency of E.coli[J]. Micrograv. Sci. Tech., 2001, 13:24-29
    [43]
    Nechitailo G S, Yurov S, Cojocaru A, et al. Spectrophotometric analysis of tomato plants produced from seeds exposed under space flight conditions for a long time[C]//37th COSPAR Scientific Assembly. Montréal, Canada: COSPAR, 2008. 2191
    [44]
    Guerin M, Huntley M E, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition[J]. Trends Biotechnol., 2003, 21(5):210-216
    [45]
    Todd L R, Cysewski G R. Commercial potential for Haematococcus} microalgae as a natural source of astaxanthin[J]. Trends Biotechnol., 2000, 18(4):160-167
    [46]
    Kobayashi M. Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis[J]. Biotech. Bioproc. Engin., 2003, 8}:322-330
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(2977) PDF Downloads(1335) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return