Citation: | ZHANG Man, ZHOU Yufen. Three-dimensional Steady State Interplanetary Solar Wind Simulation in Spherical Coordinates with a Six-component Grid[J]. Chinese Journal of Space Science, 2014, 34(6): 773-784. doi: 10.11728/cjss2014.06.773 |
[1] |
Tóth G, Sokolov L V, Gombosi T I, et al. Space weather modeling framework: A new tool for the space science co mmunity[J]. J. Geophys. Res., 2005, 110, A12226, doi: 10.1029/2005JA
|
[2] |
Odstrcil D, Riley P, Zhao X P. Numerical simulation of the 12 May 1997 interplanetary CME event[J]. J. Geophys. Res., 2004, 109, A02116, doi: 10.1029/2003JA010135
|
[3] |
Feng Xueshang, Yang Liping, Xiang Changqing, et al. Va-lidation of the 3D AMR SIP-CESE solar wind model for four Carrington rotations[J]. Solar Phys., 2012, 279:207-229
|
[4] |
Feng Xueshang, Xiang Changqing, Zhong Dingkun. Numerical study of interplanetary solar storms[J]. Sci. China Earth Sci., 2013, 43:912-933
|
[5] |
Feng X S, Zhang S H, Xiang C Q, et al. A hybrid solar wind model of the CESE+HLL method with a yin-yang overset grid and an AMR grid[J]. Astrophys. J., 2011, 734, doi: 10.1088/0004-637X/734/1/50
|
[6] |
Feng X S, Zhong D K, Xiang C Q, et al. GPU-accelerated computing of three-dimensional solar wind bac kground[J]. Sci. China Earth Sci., 2013, 56:1864-1880
|
[7] |
Han S M, Wu S T, Dryer M. A three-dimensional, time-dependent numerical modeling of the super-sonic, super-alfvenic MHD flow[J]. Comp. Fluids, 1988, 16:81-103
|
[8] |
Pizzo V J. Global quasi-steady dynamics of the distant solar wind 1 Origin of north-south flows in the outer heliosphere[J]. J. Geophys. Res., 1994, 99:4173-4183
|
[9] |
Usmanov A V. The global structure of the solar wind in June 1991[J]. Solar Phys., 1993, 148:371-382
|
[10] |
Usmanov A V, Goldstein M L, Besser B P, Fritzer J M. A global MHD solar wind model with WKB Alfve'n waves: Comparison with Ulysses data[J]. J. Geophys. Res., 2000, 105:12675-12695
|
[11] |
Detman Thomas,Smith Zdenka,Dryer Murray, et al. A hybrid heliospheric modeling system: Bac kground solar wind[J]. J. Geophys. Res., 2006, 111, A07102, doi:10. 1029/2005JA011430
|
[12] |
Detman T R, Intriligator D S, Dryer M, et al. The influence of pickup protons, from interstellar neutral hydrogen, on the propagation of interplanetary shocks from the Halloween 2003 solar events to ACE and Ulysses: A 3-D MHD modeling study[J]. J. Geophys. Res., 2011, 116, A03105, doi: 10.1029/2010JA015803
|
[13] |
Hayashi K. An MHD simulation model of time-dependent co-rotating solar wind[J]. J. Geophys. Res., 2012, 117, A08105, doi: 10.1029/2011JA017490
|
[14] |
Odstrcil D. Modeling 3D solar wind structure[J]. Adv. Space Res., 2003, 32:497-506
|
[15] |
Arge C N, Pizzo V J. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates[J]. J. Geophys. Res., 2000, 105, doi:10. 1029/1999JA000262
|
[16] |
Riley P, Linker J, Miki'c Z. An empirically-driven global MHD model of the solar corona and inner heliosphere[J]. J. Geophys. Res., 2001, 106(A8):15889-15901
|
[17] |
Wiengarten T, Kleimann J, Fichtner H, et al. MHD simulation of the inner-heliospheric magnetic field[J]. J. Geophys. Res., 2013, 118:29-44
|
[18] |
Holst B Van der, Poedts S, Chané E, et al. Modelling of solar wind, CME Initiation and CME propagation[J]. Space Sci. Rev., 2005, 121:91-104
|
[19] |
Jiang J, Cameron R, Schmitt D, Schüssler M. Modeling the Sun's open magnetic flux and the heliospheric current sheet[J]. Astrophys. J., 2010, 709:301-307
|
[20] |
Zhao X, Hoeksema J T. Predicting the heliospheric magnetic field using the current sheet-source surface model[J]. Adv. Space Res., 2005, 16, doi: 10.1016/0273-1177(95)00331-8
|
[21] |
Lyon J G, Fedder J A, Mobarry C M. The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code[J]. J. Atmos. Sol. Terr. Phys., 2004, 66:1333-1350
|
[22] |
Pahud D M. An MHD simulation of the inner heliosphere during Carrington rotations 2060 and 2068: Comparison with MESSENGER and ACE spacecraft observations[J]. J. Atmos. Sol. Terr. Phys., 2012, 83:32-38
|
[23] |
McGregor S L, Hughes W J, Arge C N, et al. The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind[J]. J. Geophys. Res., 2011, 116, A03101, doi: 10.1029/2010JA015881
|
[24] |
Wu C C, Murray D, Wu S T, et al. Global three-dimensional simulation of the interplanetary evolution of the observed geoeffective coronal mass ejection during the epoch 1-4 August 2010[J]. J. Geophys. Res., 2011, 116, A12103, doi: 10.1029/2011JA016947
|
[25] |
Fry C D, Sun W, Deehr C S, et al. Improvements to the HAF solar wind model for space weather predictions[J]. J. Geophys. Res., 2001, 106(A10):20985-21001
|
[26] |
Pizzo V J. A Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams[J]. J. Geophys. Res., 1982, 87:4374-4394
|
[27] |
Pizzo V J. A three-dimensional model of corotating streams in the solar wind 2. Hydrodynamic streams[J]. J. Geophys. Res., 1980, 85:727-743
|
[28] |
Usmanov A V. Interplanetary magnetic field structure and solar wind parameters as inferred from solar magnetic field observations and by using a numerical 2-D MHD model[J]. Solar Phys., 1993, 143:345-363
|
[29] |
Usmanov A V. A global 3-D model of the solar wind[J]. Solar Phys., 1993, 146:377-396
|
[30] |
Usmanov A V, Goldstein M L. A tilted-dipole MHD model of the solar corona and solar wind[J]. J. Geophys. Res., 2003, 108(A09), doi: 10.1029/2002JA009777
|
[31] |
Feng Xueshang, Wu S T, Fan Quanlin, Wei Fengsi, Yao Jiusheng. A class of TVD type combined numerical scheme for MHD equations and its application to MHD numerical simulation[J]. Chin. J. Space Sci., 2002, 22(4):200-208. In Chinese (冯学尚, Wu S T, 范全林, 魏奉思, 姚久胜. 一类TVD型组合差分方法及其在磁流体数值计算中的应用[J]. 空间科学学报, 2002, 22(4):200-208)
|
[32] |
Feng X S, Xiang C Q, Zhong D K, Fan Q L. A comparative study on 3D solar wind structure observed by Ulysses and MHD simulation[J]. Chin. Sci. Bull., 2005, 50:820-826
|
[33] |
Feng Xueshang, Yang Liping, Xiang Changqing, et al. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid [J]. Astrophys. J., 2010, 723:300-319
|
[34] |
Feng Xueshang, Jiang Chaowei, Xiang Changqing, et al. A data-driven model for the global coronal evolu-tion[J]. Astrophys. J., 2012, 758, doi: 10.1088/0004-637X/758/1/62
|
[35] |
Feng X S, Yang L P, Xiang C Q, et al. Numerical study of the global corona for CR2055 driven by daily updated synoptic magnetic field[J]. Astron. Soc. Pacific Confer. Ser., 2012, 459:202
|
[36] |
Matsumoto H, Omura Y. Particle simulation of electromagnetic waves and its application to space plamas[J]. Comput. Simul. Space Plasm., 1985, 1:43-102
|
[37] |
Owens M J, Spence H E, Mcgregor S, et al. Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations[J]. Space Weather, 2008, 6, S08001, doi:10. 1029/2007SW000380
|
[38] |
Hayashi K, Masayoshi K, Munetoshi T, et al. MHD tomography using interplanetary scintillation measurement[J]. J. Geophys. Res., 2003, 108, A03102, doi:10. 1029/2002JA009567
|
[39] |
Hayashi K. Magnetohydrodynamic simulations of the solar corona and solar wind using a boundary treatment to limit solar wind mass flux[J]. Astrophys. J., 2005, 161:480-494
|
[40] |
Zhao Xuepu, Hoeksema J Todd. A coronal magnetic field model with horizontal volume and sheet currents[J]. Solar Phys., 1994, 151:91-105
|
[41] |
Odstrcil D, Pizzo V J. Three-dimensional propagation of coronal mass ejections in a structured solar wind flow 1. CME launched within the streamer belt[J]. J. Geophys. Res., 1999, 104(A1):483-492
|