Volume 35 Issue 1
Jan.  2015
Turn off MathJax
Article Contents
Hu Huiping, LÜ Jianyong, Zhou Quan, Wang Ming, Yang Yafen, Liu Ziqian, Pei Shixin. Simulation of three-dimensional Earth's bow shock[J]. Chinese Journal of Space Science, 2015, 35(1): 1-8. doi: 10.11728/cjss2015.01.001
Citation: Hu Huiping, LÜ Jianyong, Zhou Quan, Wang Ming, Yang Yafen, Liu Ziqian, Pei Shixin. Simulation of three-dimensional Earth's bow shock[J]. Chinese Journal of Space Science, 2015, 35(1): 1-8. doi: 10.11728/cjss2015.01.001

Simulation of three-dimensional Earth's bow shock

doi: 10.11728/cjss2015.01.001 cstr: 32142.14.cjss2015.01.001
  • Received Date: 2014-01-24
  • Rev Recd Date: 2014-07-08
  • Publish Date: 2015-01-15
  • We use a physics-based global Magnetohydrodynamic (MHD) model to investigate the location and shape of the Earth's bow shock. The bow shock locations in the simulations are identified by an automated search algorithm and is fitted by simple analytical functions. A global three dimensional bow shock model is constructed to include the effect of magnetopause and is parameterized by the fast magnetosonic Mach number, solar wind ram pressure, interplanetary magnetic field strength, and magnetopause curvature radius. The model results are compared and agree well with the previous empirical and simulation models. We also find that both the shock standoff distance and the shock flaring angle decrease monotonically with increasing the fast magnetosonic Mach number. The size and location of bow shock on the equatorial plane and the meridian plane show obvious asymmetry.

     

  • loading
  • [1]
    Wang Jingsong, Lü Jianyong. Space Weather[M]. Beijing: China Meteorological Press, 2010. In Chinese (王劲松, 吕建永. 空间天气学[M]. 北京: 气象出版社, 2010)
    [2]
    Fairfield D H. Average and unusual locations of the Earth's magnetopause and bow shock[J]. J. Geophys. Res., 1971, 76:6700
    [3]
    Slavin J A, Holzer R E. Solar wind flow about the terrestrial planets[J]. J. Geophys. Res., 1981, 86:11401-11418
    [4]
    Farris M H, Petrinec S M, Russell C T. The thickness of the magnetosheath-Constraints on the polytropic index[J]. Geophys. Res. Lett., 1991, 18:1821-1824
    [5]
    Russell C T, Zhang T L. Unusually distant bow shock encounters at Venus[J]. Geophys. Res. Lett., 1992, 19:833
    [6]
    Verigin M, Kotova G A, Shutte N, et al. Quantitative model of the Martian magnetopause shape and its variation with the solar wind ram pressure based on Phobos-2 observations[J]. J. Geophys. Res., 1997, 102(A2):2147-2156
    [7]
    Cairns I H, Lyon J G. MHD simulations of Earth's bow shock at low Mach numbers: Standoff distances[J]. J. Geophys. Res., 1995, 10:17173-17180
    [8]
    Peredo M, Slavin J A, Mazur E, et al. Three-dimensional position and shape of the bow shock and their variation with Alfvénic, sonic, and magnetosonic Mach numbers and the interplanetary magnetic field orientation[J]. J. Geophys. Res., 1995, 100:7907-7916
    [9]
    Chapman J F, Cairns I H. Three-dimensional modeling of Earth's bow shock: Shock shape as a function of Alfvén Mach number[J]. J. Geophys. Res., 2003, 108:1174
    [10]
    Chapman J F, Cairns I H. MHD simulations of Earth's bow shock: Interplanetary magnetic field orientation effects on shape and position[J]. J. Geophys. Res., 2004, 109:A04215
    [11]
    Julian H, Seiff A, Canning T N, et al. Gas Dynamics in Space Exploration[M]. Washington: The United States Government Printing Office, 1962
    [12]
    Spreiter J R, Briggs B R. Theoretical determination of the form of the boundary of the solar corpuscular stream produced by interaction with the magnetic dipole field of the Earth[J]. J. Geophys. Res., 1962, 67:37
    [13]
    Farris M H, Russell C T. Determining the standoff distance of the bow shock: Mach number dependence and use of models[J]. J. Geophys. Res., 1994, 99:17681-17689
    [14]
    Lavraud B, Borovsky J E. Altered solar wind-magnetosphere interaction at low Mach numbers: Coronal mass ejections[J]. J. Geophys. Res., 2008, 113:A00B08
    [15]
    Bennett L, Kivelson M G, Khurana, K K, et al. A model of the Earth's distant bow shock[J]. J. Geophys. Res., 1997, 102:26927, doi: 10.1029/97JA01906
    [16]
    Chao J K, Wu D J, Lin C H, et al. Models for the size and shape of the Earth's magnetopause and bow shock[J]. Proc. COSPAR Colloq., 2002, 12:127-135
    [17]
    Hu Youqiu, Peng Zhong, Wang Chi. Rotational asymmetry of Earth's bow shock[J]. Chin. J. Geophys., 2010, 53(4):773-781. In Chinese (胡友秋, 彭忠, 王赤. 地球弓激波的旋转飞对称性[J]. 地球物理学报, 2010, 53(4):773-781)
    [18]
    Tóth G, Sokolov I V, Gombosi T I, et al. Space Weather Modeling Framework: A new tool for the space science community[J]. J. Geophys. Res., 2005, A12226
    [19]
    Powell K G, Roe P L, Linde T J, et al. A solution-adaptive upwind scheme for ideal magnetohydrodynamics[J]. J. Comput. Phys., 1999, 154:284-309
    [20]
    De Zeeuw D L, Sazykin S, Wolf R A, et al. Coupling of a global MHD code and an inner magnetospheric model: Initial results[J]. J. Geophys. Res., 2004, A12219
    [21]
    Lü J Y, Liu Z Q, Kabin K, Jing H, Zhao M X, Wang Y. The IMF dependence of the magnetopause from global MHD/simulations[J]. J. Geophys. Res., 2013, 118:3113-3125
    [22]
    Verigin M, Kotova G A, Szabo A, et al. Wind observations of the terrestrial bow shock: 3-D shape and motion[J]. Earth Planet. Space, 2001, 53(10):1001-1009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(2072) PDF Downloads(1289) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return