Volume 35 Issue 3
May  2015
Turn off MathJax
Article Contents
Song Qingping, Liu Rongke. A Carrier Synchronization Algorithm for Autonomous Radio Receiver in Deep Space[J]. Chinese Journal of Space Science, 2015, 35(3): 343-349. doi: 10.11728/cjss2015.03.343
Citation: Song Qingping, Liu Rongke. A Carrier Synchronization Algorithm for Autonomous Radio Receiver in Deep Space[J]. Chinese Journal of Space Science, 2015, 35(3): 343-349. doi: 10.11728/cjss2015.03.343

A Carrier Synchronization Algorithm for Autonomous Radio Receiver in Deep Space

doi: 10.11728/cjss2015.03.343 cstr: 32142.14.cjss2015.03.343
Funds:  Supported by Program for New Century Excellent Talents in University (NCET-12-0030), and National Natural Science Foundation of China (91438116)
  • Received Date: 2014-09-20
  • Rev Recd Date: 2015-03-04
  • Publish Date: 2015-05-15
  • The carrier synchronization algorithm of the autonomous radio for deep space is studied. When the signal modulation is unknown, this paper improves the existing universal carrier synchronization loop for multiple modulations, expands the frequency tracking range of the loop, proposes a Tong detection-based M-ary Phase Shift Keying (M-PSK) signal locking detection algorithm to rapidly and effectively determine whether the current phase discrimination mode matches the modulation mode, so as to independently choose whether to switch the phase discrimination mode. Through theoretical analysis and comparison, it is described that the total detection probability of the algorithm proposed in this paper is significantly higher than the probability of single lock detection. Simulation results show that the algorithm has high detection probability and low computational complexity at a low signal to noise ratio.

     

  • loading
  • [1]
    Haskins C B, DeBoy C C. Deep-space transceivers-an innovative approach to spacecraft communications [J]. Proc. IEEE, 2007, 95(10):2009-2018
    [2]
    Wang L, Wang Z G, Xiong W M. A blind frequency offset estimator for coherent M-PSK system in autonomous radio [J]. Circ. Syst. Sign. Proc., 2013, 32(3):1205-1217
    [3]
    Jet Propulsion Laboratory. An Overview of the architecture of an autonomous radio [R]. California: Jet Propulsion Laboratory, 2004
    [4]
    Nandi A K, Azzouz E E. Algorithm for automatic modulation recognition of communication signals [J]. IEEE Trans. Commun., 1998, 46(4):431-436
    [5]
    Shermeh A E, Azimi H. Blind signal-type classification using a novel robust feature subset selection method and neural network classifier [J]. Ann. Telec., 2010, 65(5):625- 633
    [6]
    Wei W, Mendel J M. Maximum-likelihood classification for digital amplitude-phase modulations [J]. IEEE Trans. Commun., 1998, 48(2):189-193
    [7]
    Chavali V G, da Silva C R C M. Maximum-likelihood classification of digital amplitude-phase modulated signals in flat fading non-Gaussian channels [J]. IEEE Trans. Commun., 2011, 59(8):2051-2056
    [8]
    Kaplan E D. Understanding GPS: Principles and Application [M]. Boston, MA: Artech House Inc., 1996
    [9]
    Jet Propulsion Laboratory. Direct-to-Earth Communications and Signal Processing for Mars Exploration Rover Entry, Descent, and Landing [R]. California: Jet Propulsion Laboratory, 2003
    [10]
    Razavi A, Egziabher D G, Akos D M. Carrier loop architectures for tracking weak GPS signals [J]. IEEE Trans. Aeros. Elect. Sys., 2008, 44(2):697-710
    [11]
    Liu J X. Spacecraft TT&C and Communication Engineering [M]. Beijing: National Defense Industry Press, 2010 (In Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1234) PDF Downloads(1265) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return