Citation: | LIU Qiang, LI Huichao. Improvement and Application of Lax-Friderichs Scheme in MHD Numerical Simulation[J]. Chinese Journal of Space Science, 2016, 36(6): 857-865. doi: 10.11728/cjss2016.06.857 |
[1] |
BÜCHNER J, DUM C T, SCHOLER M. Space Plasma Simulation[M]. Berlin: Springer, 2003
|
[2] |
ROE P L, BALSARA D S. Notes on the eigensystem of magnetohydrodynamics[J]. Siam J. Appl. Math., 1996, 56(1):57-67
|
[3] |
HAN S M, WU S T, DRYER M. A three-dimensional, time-dependent numerical modeling of super-sonic, super-Alfvénic MHD flow[J]. Comp. Fluids, 1988, 16(1):81
|
[4] |
ANGELOPOULOS C D. High resolution schemes for hyperbolic conservation laws[J]. J. Comput. Phys., 1983, 49:357-393
|
[5] |
WAAGAN K. A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics[J]. J. Comput. Phys., 2009, 228(23):8609-8626
|
[6] |
GARDINER T A, STONE J M. An unsplit Godunov method for ideal MHD via constrained transport in three dimensions[J]. J. Comput. Phys., 2005, 205(2):509-539
|
[7] |
FENG Xueshang, ZHOU Yufen, HU Yanqi. A 3rd order WENO GLM-MHD scheme for magnetic reconnection[J]. Chin. J. Space Sci., 2006, 26(1):1-7
|
[8] |
GREENOUGH J A, RIDER W J. A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov[J]. J. Comput. Phys., 2004, 196:259-281
|
[9] |
TANAKA T. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields[J]. J. Comput. Phys., 1994, 111(2):381-389
|
[10] |
FENG Xueshang, WU Shitsan, FAN Quanlin, et al. Scheme for MHD equations and its application to MHD numerical simulation[J]. Chin. J. Space Sci., 2002, 22(4): 300-308(冯学尚, WU S T, 范全林, 等. 一类TVD型组合差分方法及其在磁流体数值计算中的应用[J]. 空间科学学报, 2002, 22(4):300-308)
|
[11] |
WEI Fengsi, LIU Rui, FAN Quanlin, FENG Xueshang. Characteristics of the boundary layer of magnetic clouds and a new definition of the cloud boundary[J]. Sci. China: Tech. Sci., 2003, 46(1):19-32
|
[12] |
FENG Xueshang, XIANG Changqing, ZHONG Dingkun, FAN Quanlin. The comparison research of Ulysses observation and MHD simulation of 3D solar wind structure[J]. Chin. Sci. Bull., 2005, 50(8):820-826(冯学尚, 向长青, 钟鼎坤, 范全林. 三维太阳风结构的Ulysses观测和MHD模拟的比较研究[J]. 科学通报, 2005, 50(8):820-826)
|
[13] |
FAN Quanlin, WEI Fengsi, FENG Xueshang. Numerical simulation on a possible formation mechanism of interplanetary magnetic cloud boundaries[J]. Comm. Theor. Phys., 2003, 40:247-252
|
[14] |
POWELL K G, ROE P L, LINDE T J, et al. A solution-adaptive upwind scheme for ideal magneto-hydrodynamics[J]. J. Comput. Phys., 1999, 154:284-309
|
[15] |
JANHUNEN P. A positive conservative method for magnetohydrodynamics based on HLL and Roe methods[J]. J. Comput. Phys., 2000, 160:649-661
|
[16] |
DEDNER A, KEMM F, KRÖNER D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. J. Comput. Phys., 2002, 175:645-673
|
[17] |
YALIM M S, ABEELE D V, LANI A, et al. A finite volume implicit time integration method for solving the equations of ideal magneto-hydrodynamics for the hyperbolic divergence cleaning approach[J]. J. Comput. Phys., 2011, 230:6136-6154
|
[18] |
DIEBEL J. Numerical simulation of sub- and supersonic flows in inductively coupled plasma tunnels[R]//Technical Report 09. Belgium: Von Karman Institute for Fluid Dynamics, 2003
|
[19] |
BALSARA D S, SPICER D S. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations[J]. J. Comput. Phys., 1999, 149:270-292
|
[20] |
HIDALGO M A, CID C, MEDINA J, VINAS A F. A new model for the topology of magnetic clouds in the solar wind[J]. Solar Phys., 2000, 194:165-174
|
[21] |
FENG Xueshang, ZHOU Yufen, WU S T. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method[J]. Astrophys. J., 2007, 655:1110-1126
|