Volume 36 Issue 6
Nov.  2016
Turn off MathJax
Article Contents
LIU Qiang, LI Huichao. Improvement and Application of Lax-Friderichs Scheme in MHD Numerical Simulation[J]. Chinese Journal of Space Science, 2016, 36(6): 857-865. doi: 10.11728/cjss2016.06.857
Citation: LIU Qiang, LI Huichao. Improvement and Application of Lax-Friderichs Scheme in MHD Numerical Simulation[J]. Chinese Journal of Space Science, 2016, 36(6): 857-865. doi: 10.11728/cjss2016.06.857

Improvement and Application of Lax-Friderichs Scheme in MHD Numerical Simulation

doi: 10.11728/cjss2016.06.857 cstr: 32142.14.cjss2016.06.857
  • Received Date: 2015-10-19
  • Rev Recd Date: 2016-03-21
  • Publish Date: 2016-11-15
  • Magnetohydrodynamics (MHD) numerical simulation is an important tool for space physics research. In this paper, Lax-Friderchs scheme with TVD property is employed to solve GLM-MHD equations. The diffusion turning coefficient is introduced for scheme optimization. Simulation result of 2D rotor test and magnetic cloud current sheet interaction test demonstrates GLM-MHD method's divergence control capability. The simulation consumes less than half of the computational time comparing with simulation utilizing Poisson correction method. While numerical stability is not damaged, numerical diffusion is reduced by the diffusion tuning coefficient.

     

  • loading
  • [1]
    BÜCHNER J, DUM C T, SCHOLER M. Space Plasma Simulation[M]. Berlin: Springer, 2003
    [2]
    ROE P L, BALSARA D S. Notes on the eigensystem of magnetohydrodynamics[J]. Siam J. Appl. Math., 1996, 56(1):57-67
    [3]
    HAN S M, WU S T, DRYER M. A three-dimensional, time-dependent numerical modeling of super-sonic, super-Alfvénic MHD flow[J]. Comp. Fluids, 1988, 16(1):81
    [4]
    ANGELOPOULOS C D. High resolution schemes for hyperbolic conservation laws[J]. J. Comput. Phys., 1983, 49:357-393
    [5]
    WAAGAN K. A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics[J]. J. Comput. Phys., 2009, 228(23):8609-8626
    [6]
    GARDINER T A, STONE J M. An unsplit Godunov method for ideal MHD via constrained transport in three dimensions[J]. J. Comput. Phys., 2005, 205(2):509-539
    [7]
    FENG Xueshang, ZHOU Yufen, HU Yanqi. A 3rd order WENO GLM-MHD scheme for magnetic reconnection[J]. Chin. J. Space Sci., 2006, 26(1):1-7
    [8]
    GREENOUGH J A, RIDER W J. A quantitative comparison of numerical methods for the compressible Euler equations: fifth-order WENO and piecewise-linear Godunov[J]. J. Comput. Phys., 2004, 196:259-281
    [9]
    TANAKA T. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields[J]. J. Comput. Phys., 1994, 111(2):381-389
    [10]
    FENG Xueshang, WU Shitsan, FAN Quanlin, et al. Scheme for MHD equations and its application to MHD numerical simulation[J]. Chin. J. Space Sci., 2002, 22(4): 300-308(冯学尚, WU S T, 范全林, 等. 一类TVD型组合差分方法及其在磁流体数值计算中的应用[J]. 空间科学学报, 2002, 22(4):300-308)
    [11]
    WEI Fengsi, LIU Rui, FAN Quanlin, FENG Xueshang. Characteristics of the boundary layer of magnetic clouds and a new definition of the cloud boundary[J]. Sci. China: Tech. Sci., 2003, 46(1):19-32
    [12]
    FENG Xueshang, XIANG Changqing, ZHONG Dingkun, FAN Quanlin. The comparison research of Ulysses observation and MHD simulation of 3D solar wind structure[J]. Chin. Sci. Bull., 2005, 50(8):820-826(冯学尚, 向长青, 钟鼎坤, 范全林. 三维太阳风结构的Ulysses观测和MHD模拟的比较研究[J]. 科学通报, 2005, 50(8):820-826)
    [13]
    FAN Quanlin, WEI Fengsi, FENG Xueshang. Numerical simulation on a possible formation mechanism of interplanetary magnetic cloud boundaries[J]. Comm. Theor. Phys., 2003, 40:247-252
    [14]
    POWELL K G, ROE P L, LINDE T J, et al. A solution-adaptive upwind scheme for ideal magneto-hydrodynamics[J]. J. Comput. Phys., 1999, 154:284-309
    [15]
    JANHUNEN P. A positive conservative method for magnetohydrodynamics based on HLL and Roe methods[J]. J. Comput. Phys., 2000, 160:649-661
    [16]
    DEDNER A, KEMM F, KRÖNER D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. J. Comput. Phys., 2002, 175:645-673
    [17]
    YALIM M S, ABEELE D V, LANI A, et al. A finite volume implicit time integration method for solving the equations of ideal magneto-hydrodynamics for the hyperbolic divergence cleaning approach[J]. J. Comput. Phys., 2011, 230:6136-6154
    [18]
    DIEBEL J. Numerical simulation of sub- and supersonic flows in inductively coupled plasma tunnels[R]//Technical Report 09. Belgium: Von Karman Institute for Fluid Dynamics, 2003
    [19]
    BALSARA D S, SPICER D S. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations[J]. J. Comput. Phys., 1999, 149:270-292
    [20]
    HIDALGO M A, CID C, MEDINA J, VINAS A F. A new model for the topology of magnetic clouds in the solar wind[J]. Solar Phys., 2000, 194:165-174
    [21]
    FENG Xueshang, ZHOU Yufen, WU S T. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method[J]. Astrophys. J., 2007, 655:1110-1126
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1453) PDF Downloads(756) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return