Volume 37 Issue 3
May  2017
Turn off MathJax
Article Contents
LIAO Li, ZHAO Shufan, ZHANG Xuemin. Advances in the Study of Transionospheric Propagation of VLF Waves[J]. Chinese Journal of Space Science, 2017, 37(3): 277-283. doi: 10.11728/cjss2017.03.277
Citation: LIAO Li, ZHAO Shufan, ZHANG Xuemin. Advances in the Study of Transionospheric Propagation of VLF Waves[J]. Chinese Journal of Space Science, 2017, 37(3): 277-283. doi: 10.11728/cjss2017.03.277

Advances in the Study of Transionospheric Propagation of VLF Waves

doi: 10.11728/cjss2017.03.277 cstr: 32142.14.cjss2017.03.277
  • Received Date: 2016-04-26
  • Rev Recd Date: 2016-12-20
  • Publish Date: 2017-05-15
  • Very Low Frequency (VLF) electromagnetic wave (3~30kHz) mainly radiated by lightening and ground-based VLF transmitters, which plays a very important role on controlling the distribution of high energy particles in the magnetosphere. VLF radiation can penetrate into the ionosphere, and propagate in whistler mode in the ionosphere, and interact with high energy particles in the magnetosphere. In this paper, the development of the calculation model of VLF wave penetrating into the ionosphere, the validation of the model and the application of the model in the study of the ionospheric phenomena are reviewed, and a preliminary outlook for future work has also been made.

     

  • loading
  • [1]
    CHRISSAN D A, FRASER-SMITH A C. Seasonal variations of globally measured ELF/VLF radio noise[J]. Radio Sci., 1996, 31(5):1141-1152
    [2]
    UMAN M A, HORNSTEIN J. The lightening discharge[J]. Phys. Today, 1989, 42(5):75-76
    [3]
    WATT T M. Obtaining local values of plasma scale height with the Alouette 1 topside sounder[J]. J. Geophys. Res., 1967, 72(15):3843-3853
    [4]
    SWANSON E R, KUGEL C P. VLF timing: conventional and modern techniques including omega[J]. Proc. IEEE, 1972, 60(5):540-551
    [5]
    DAVIES K. Ionospheric Radio[M]. London: The Institution of Electrical Engineering and Technology, 1990
    [6]
    STOREY L R O. An investigation of whistling atmosphe-rics[J]. Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci., 1953, 246(908):113-141
    [7]
    HELLIWELL R A. Whistlers and Related Ionospheric Phenomena[M]. California: Stanford University Press, 1965
    [8]
    XU Jisheng, MO Qixu. Transmission characteristics of low latitude whistlers through the lower ionosphere——full wave solution[J]. Acta Geophys. Sin., 1989, 32(3):256-261 (徐继生, 莫启绪. 低纬哨声通过低电离层传播的透射特征elax——elax全波解[J]. 地球物理学报, 1989, 32(3):256-261)
    [9]
    NAGANO I, MAMBO M, HUTATSUISHI G. Numerical calculation of electromagnetic waves in an anisotropic multilayered medium[J]. Radio Sci., 1975, 10(6):611-617
    [10]
    HAYAKAWA M, TANAKA Y. On the propagation of low-latitude whistlers[J]. Rev. Geophys., 1978, 16(1):111-123
    [11]
    XU Jisheng, BAO Zongti, LIANG Baixian. A method of 3-D ray tracing of whistler-mode waves using the IGRF model[J]. Acta Geophys. Sin., 1985, 28(5):443-451 (徐继生, 保宗悌, 梁百先. 国际地磁参考场中哨声模波的三维射线跟踪算法[J]. 地球物理学报, 1985, 28(5):443-451)
    [12]
    XU Jisheng, TIAN Mao, MA Shuying, et al. Multi-stationed wide band direction finding measurements for whistlers at geomagnetic latitudes below 20° in China and some early results[J]. Acta Geophys. Sin., 1989, 32(2): 125-134 (徐继生, 田茂, 马淑英, 等. 磁纬20°以下地区哨声多台宽带定向观测及其初步结果[J]. 地球物理学报, 1989, 32(2):125-134)
    [13]
    ONDOH T, KOTAKI M, MURAKAMI T, et al. Propagation characteristics of low-latitude whistlers[J]. J. Geophys. Res., 1979, 84(A5):2097-2104
    [14]
    WU Xiangyang, BAO Zongti, NAGANO I, et al. Numerical simulation of the whistler penetration process through the lower ionosphere at very-low-latitude[J]. Acta Geophys. Sin., 1996, 39(5):588-600 (吴向阳, 保宗悌, 长野勇, 等. 甚低纬哨声低电离层透射过程的数值模拟[J]. 地球物理学报, 1996, 39(5):588-600)
    [15]
    KENNEL C F, PETSCHEK H E. Limit on stably trapped particle fluxes[J]. J. Geophys. Res., 1966, 71(1):1-28
    [16]
    LYONS L R, THORNE R M, KENNEL C F. Pitch-angle diffusion of radiation belt electrons within the plasmasphere[J]. J. Geophys. Res., 1972, 77:3455-3474
    [17]
    IMHOF W L, REAGAN J B, VOSS H D, et al. The modulated precipitation of radiation belt electrons by controlled signals from VLF transmitters[J]. Geophys. Res. Lett., 1983, 10(8):615-618
    [18]
    INAN U S, CARPENTER D L. Lightning-induced electron precipitation events observed at L~2.4 as phase and amplitude perturbations on subionospheric VLF sig-nals[J]. J. Geophys. Res., 1987, 92(A4):3293-3303
    [19]
    VAMPOLA A L. VLF transmission induced slot electron precipitation[J]. Geophys. Res. Lett., 1977, 4(12):569-572
    [20]
    ABEL B, THORNE R M. Electron scattering loss in Earth's inner magnetosphere: 2. Sensitivity to model parameters[J]. J. Geophys. Res., 1998, 103(A2):2397-2408
    [21]
    BARR R, STUBBE P. ELF radiation from the Tromsø"super heater" facility[J]. Geophys. Res. Lett., 1991, 18(6):1035-1038
    [22]
    PLATINO M, INAN U S, BELL T F, et al. DEMETER observations of ELF waves injected with the HAARP HF transmitter[J]. Geophys. Res. Lett., 2006, 33(16):L16101
    [23]
    WANG Feng, ZHAO Zhengyu, ZHANG Yuannong. Numerical modeling of ionospheric current artificial mo-dulation at low latitude[J]. Chin. J. Geophys., 2009, 52(4):887-894 (汪枫, 赵正予, 张援农. 低纬地区电离层电流的人工调制数值模拟[J]. 地球物理学报, 2009, 52(4):887-894)
    [24]
    INAN U S, CHANG H C, HELLIWELL R A. Electron precipitation zones around major ground-based VLF signal sources[J]. J. Geophys. Res., 1984, 89(A5):2891-2906
    [25]
    ABEL B, THORNE R M. Electron scattering loss in Earth's inner magnetosphere: 1. Dominant physical processes[J]. J. Geophys. Res., 1998, 103(A2):2385-2396
    [26]
    BORTNIK J, INAN U S, BELL T F. L dependence of energetic electron precipitation driven by magnetospherically reflecting whistler waves[J]. J. Geophys. Res., 2002, 107(A8):SMP 1-1-SMP 1-13. DOI: 10.1029/2001JA000303
    [27]
    STARKS M J, QUINN R A, GINET G P, et al. Illumination of the plasmasphere by terrestrial very low frequency transmitters: model validation[J]. J. Geophys. Res., 2008, 113:A09320. DOI: 10.1029/2008JA013112
    [28]
    GOLDEN D I, SPASOJEVIC M, FOUST F R, et al. Role of the plasmapause in dictating the ground accessibility of ELF/VLF chorus[J]. J. Geophys. Res., 2010, 115:A11211. DOI: 10.1029/2010JA015955
    [29]
    CRARY J H. The Effect of the Earth-Ionosphere Waveguide on Whistlers[R]. Stanford, California: Stanford Electron Laboratory, Stanford University, 1961
    [30]
    YAGITANI S, NAGANO I, MIYAMURA K, et al. Full wave calculation of ELF/VLF propagation from a dipole source located in the lower ionosphere[J]. Radio Sci., 1994, 29(1):39-54
    [31]
    LEHTINEN N G, INAN U S. Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet[J]. J. Geophys. Res., 2008, 113:A06301
    [32]
    WAIT J R, CULLEN A L, FOCK V A, et al. Electromagnetic Waves in Stratified Media[M]. Oxford: Pergamon Press, 1970
    [33]
    BUDDEN K G. The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere[M]. Cambridge: Cambridge University Press, 1985
    [34]
    NYGRÉN T. A method of full wave analysis with improved stability[J]. Planet. Space Sci., 1982, 30(4):427-430
    [35]
    CHO M, RYCROFT M J. Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere[J]. J. Atmos. Sol.-Terr. Phys., 1998, 60(7/8/9):871-888
    [36]
    CUMMER S A. Modeling electromagnetic propagation in the Earth-ionosphere waveguide[J]. IEEE Trans. Antenn. Propag., 2000, 48(9):1420-1429
    [37]
    HU W, CUMMER S A. An FDTD model for low and high altitude lightning-generated EM fields[J]. IEEE Trans. Antenn. Propag., 2006, 54(5):1513-1522
    [38]
    SIMPSON J J, TAFLOVE A. Three-dimensional FDTD modeling of impulsive ELF propagation about the earth-sphere[J]. IEEE Trans. Antenn. Propag., 2004, 52(2):443-451
    [39]
    YANG Y, HU S M, CHEN R S. A combination of FDTD and least-squares support vector machines for analysis of microwave integrated circuits[J]. Microw. Opt. Technol. Lett., 2005, 44(3):296-299
    [40]
    LEHTINEN N G, INAN U S. Full-wave modeling of transionospheric propagation of VLF waves[J]. Geophys. Res. Lett., 2009, 36:L03104. DOI: 10.1029/2008GL036535
    [41]
    COHEN M B, LEHTINEN N G, INAN U S. Models of ionospheric VLF absorption of powerful ground based transmitters[J]. Geophys. Res. Lett., 2012, 39:L24101. DOI: 10.1029/2012GL054437
    [42]
    NAGANO I, ROSEN P A, YAGITANI S, et al. Full wave analysis of the Australian Omega signal observed by the Akebono satellite[J]. IEICE Trans. Commun., 1993, E76-B(12):1571-1578
    [43]
    TAO X, BORTNIK J, FRIEDRICH M. Variance of transionospheric VLF wave power absorption[J]. J. Geophys. Res., 2010, 115:A07303. DOI: 10.1029/2009JA015115
    [44]
    FOUST F R, INAN U S, BELL T, et al. Quasi-ele-ctrostatic whistler mode wave excitation by linear sca-tte-ring of EM whistler mode waves from magnetic field-aligned density irregularities[J]. J. Geophys. Res., 2010, 115:A11310. DOI: 10.1029/2010JA015850
    [45]
    SHAO X, ELIASSON B, SHARMA A S, et al. Attenuation of whistler waves through conversion to lower hybrid waves in the low-altitude ionosphere[J]. J. Geophys. Res., 2012, 117:A04311. DOI: 10.1029/2011JA017339
    [46]
    BELL T F, INAN U S, PIDDYACHIY D, et al. Effects of plasma density irregularities on the pitch angle scattering of radiation belt electrons by signals from ground based VLF transmitters[J]. Geophys. Res. Lett., 2008, 35:L19103. DOI: 10.1029/2008GL034834
    [47]
    COHEN M B, INAN U S. Terrestrial VLF transmitter injection into the magnetosphere[J]. J. Geophys. Res., 2012, 117:A08
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1757) PDF Downloads(1198) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return