Volume 37 Issue 3
May  2017
Turn off MathJax
Article Contents
YANG Junfeng, XIAO Cunying, HU Xiong, XU Qingchen. Observations and Simulations of the Mean Winds in Mesosphere and Lower Thermosphere over Langfang of China[J]. Chinese Journal of Space Science, 2017, 37(3): 284-290. doi: 10.11728/cjss2017.03.284
Citation: YANG Junfeng, XIAO Cunying, HU Xiong, XU Qingchen. Observations and Simulations of the Mean Winds in Mesosphere and Lower Thermosphere over Langfang of China[J]. Chinese Journal of Space Science, 2017, 37(3): 284-290. doi: 10.11728/cjss2017.03.284

Observations and Simulations of the Mean Winds in Mesosphere and Lower Thermosphere over Langfang of China

doi: 10.11728/cjss2017.03.284 cstr: 32142.14.cjss2017.03.284
  • Received Date: 2016-01-25
  • Rev Recd Date: 2016-12-05
  • Publish Date: 2017-05-15
  • By use of the observations of the meteor radar located at Langfang, China (39.4°N, 116.7°E), the seasonal variation of mean winds in the Mesospheric and Lower Thermospheric (MLT) layer at 80~100km altitude over Langfang are studied. The time range of the observations is from 1 April 2012 to 31 March 2013. The results show that both the mean zonal winds and the mean meridional winds have obvious seasonal variations. In winter, westward winds prevail in the MLT, which are strongest in mesopause and decrease with increasing altitude. In summer, eastward winds dominate in mesosphere and decrease with increasing altitude, then turn to the strong westward winds at 82km altitude in lower thermosphere. Usually, the mean meridional winds are southward in summer and northward in winter. The wind evolutions have the transition features in spring and autumn. The above main seasonal variations of mean winds are captured largely by the simulation of WACCM4 model and HWM93 model. However, WACCM overestimates the wind velocities, and HWM93 underestimates the winds velocities.

     

  • loading
  • [1]
    SMITH A K. Global dynamics of the MLT[J]. Surveys Geophys., 2012, 33(6):1177-1230
    [2]
    WAN Weixing, XU Jiyao. Recent investigation on the coupling between the ionosphere and upper atmos-phere[J]. Sci. China: Earth Sci., 2014, 57(9):1863-1883 (万卫星, 徐寄遥. 中国高层大气与电离层耦合研究进展[J]. 中国科学:地球科学, 2014, 44(9):1863-1883)
    [3]
    ZHAO Lei, CHEN Jinsong, DING Zonghua, et al. First observations of tidal oscillations by an Mf radar over Kunming (25.6°N, 103.8°E)[J]. J. Atmos. Sol.-Terr. Phys., 2012, 78-79:44-52
    [4]
    LU Xian, LIU A Z, SWENSON G R, et al. Gravity wave propagation and dissipation from the stratosphere to the lower thermosphere[J]. J. Geophys. Res., 2009, 114(D11):D11101
    [5]
    LU Xian, LIU A Z, OBERHEIDE J, et al. Seasonal variability of the diurnal tide in the mesosphere and lower thermosphere over Maui, Hawaii (20.7°N, 156.3°W)[J]. J. Geophys. Res., 2011, 116(D17):D17103
    [6]
    LIMPASUVAN V, RICHTER J H, ORSOLINI Y J, et al. The roles of planetary and gravity waves during a major stratospheric sudden warming as characterized in WACCM[J]. J. Atmos. Sol.-Terr. Phys., 2012, 78-79:84-98
    [7]
    YI Wen, CHEN Jinsong, MA Chunbo, et al. Observation of upper atmospheric temperature by Kunming all-sky meteor radar[J]. Chin. J. Geophys., 2014, 57(8):2433-2432 (易稳, 陈金松, 马春波, 等. 昆明全天空流星雷达观测中高层大气温度[J]. 地球物理学报, 2014, 57(8):2433-2432)
    [8]
    XIONG Jiangang, WAN Weixing, NING Baiqi, et al. Meteor radar observation of circulation near mesopause over Wuhan[J]. Chin. Sci. Bull., 2003, 48(10):1102-1106 (熊建刚, 万卫星, 宁百齐, 等. 武汉上空中层顶附近大气环流的流星雷达观测[J]. 科学通报, 2003, 48(10):1102-1106)
    [9]
    GUO Wenjie HU Xiong, YAN Zhaoai, et al. Terrain-generated gravity waves in the upper stratosphere detected by Rayleigh lidar[J]. Chin. J. Geophys., 2015, 58(10):3481-3486 (郭文杰, 胡雄, 闫召爱, 等. 利用瑞利激光雷达观测北京地区上平流层地形重力波活动[J]. 地球物理学报, 2015, 58(10):3481-3486)
    [10]
    CHEN Hongbin. An overview of the space-based observations for upper atmospheric research[J].Adv. Earth Sci., 2009, 24(3):229-241 (陈洪滨. 中高层大气研究的空间探测[J]. 地球科学进展, 2009, 24(3):229-241)
    [11]
    XIAO Cunying, HU Xiong, SMITH A K, et al. Short-term variability and summer——2009 averages of the mean wind and tides in the mesosphere and lower thermosphere over Langfang, China (39.4°N, 116.7°E)[J]. J. Atmos. Sol.-Terr. Phys., 2013, 92:65-77
    [12]
    XU X, MANSON A H, MEEK C E, et al. Mesosphe-ric wind semidiurnal tides within the Canadian middle atmosphere model data assimilation system[J]. J. Geophys. Res., 2011, 116(D17):D17102
    [13]
    DAVIS R N, DU J, SMITH A K, et al. The diurnal and semidiurnal tides over ascension island (8°S, 14°W) and their interaction with the stratospheric quasi-biennial oscillation: studies with meteor radar, eCMAM and WACCM[J]. Atmos. Chem. Phys., 2013, 13(18):9543-9564
    [14]
    XIAO Cunying, HU Xiong, ZHANG Xunxie, et al. Interpretation of the mesospheric and lower thermospheric mean winds observed by MF radar at about 30°N with the 2D-SOCRATES model[J]. Adv. Space Res., 2007, 39(8):1267-1277
    [15]
    RICHTER J H, SASSI F, GARCIA R R, et al. Dyna-mics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3)[J]. J. Geophys. Res., 2008, 113(D8):D08101
    [16]
    LU Xian, LIU Hanli, LIU A Z, et al. Momentum budget of the migrating diurnal tide in the whole atmosphere community climate model at vernal equinox[J]. J. Geophys. Res., 2012, 117(D7):D07112
    [17]
    ANDRIOLI V F, CLEMESHA B R, BATISTA P P, et al. Atmospheric tides and mean winds in the meteor region over Santamaria (29.7°S, 53.8°W)[J]. J. Atmos. Sol.-Terr. Phys., 2009, 71(17/18):1864-1876
    [18]
    HOCKING W K, FULLER B, VANDEPEER B. Real-time determination of meteor-related parameters utili-zing modern digital technology[J]. J. Atmos. Sol.-Terr. Phys., 2001, 63(2-3):155-169
    [19]
    GARCIA R R, MARSH D R, KINNISON D E, et al. Simulation of secular trends in the middle atmosphere, 1950--2003[J]. J. Geophys. Res., 2007, 112(D9):D09301
    [20]
    RICHTER J H, SASSI F, GARCIA R R. Toward a physically based gravity wave source parameterization in a general circulation model[J]. J. Atmos. Sci., 2010, 67(1):136-156
    [21]
    BERES J H, GARCIA R R, BOVILLE B A, et al. Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM)[J]. J. Geophys. Res., 2005, 110(D10):D10108
    [22]
    HEDIN A E, SPENCER N W, KILLEEN T L. Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data[J]. J. Geophys. Res., 1988, 93(A9):9959-9978
    [23]
    HEDIN A E, BIONDI M A, BURNSIDE R G, et al. Revised global model of thermosphere winds using satellite and ground-based observations[J]. J. Geophys. Res., 1991, 96(A5):7657-7688
    [24]
    HEDIN A E, FLEMING E L, MANSON A H, et al. Empirical wind model for the upper, middle and lower atmosphere[J]. J. Atmos. Sol.-Terr. Phys., 1996, 58(13):1421-1447
    [25]
    ZHANG Dongya, HU Xiong, ZHANG Xunxie, et al. Observations of the mesospheric and lower thermospheric mean winds at 30°N with MF radars[J]. Chin. J. Space Sci., 2005, 25(4):267-272 (张冬娅, 胡雄, 张训械, 等. 北纬30°N中间层和低热层大气平均风中频雷达观测[J]. 空间科学学报, 2005, 25(4):267-272)
    [26]
    KISHORE P, NAMBOOTHIRI S P, IGARASHI K, et al. MF radar observations of mean winds and tides over Poker Flat, Alaska (65.1°N, 147.5°W)[J]. Ann. Geophys., 2002, 20(5):679-690
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1175) PDF Downloads(1048) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return