Volume 38 Issue 6
Nov.  2018
Turn off MathJax
Article Contents
SHANG Sheping, SHI Jiankui, WANG Zheng, WANG Guojun, CHENG Zhengwei, WANG Xiao. Analysis of the Ionospheric Irregularity Events in the Low Latitude of East Asia Based on Multiple Instruments[J]. Chinese Journal of Space Science, 2018, 38(6): 862-870. doi: 10.11728/cjss2018.06.862
Citation: SHANG Sheping, SHI Jiankui, WANG Zheng, WANG Guojun, CHENG Zhengwei, WANG Xiao. Analysis of the Ionospheric Irregularity Events in the Low Latitude of East Asia Based on Multiple Instruments[J]. Chinese Journal of Space Science, 2018, 38(6): 862-870. doi: 10.11728/cjss2018.06.862

Analysis of the Ionospheric Irregularity Events in the Low Latitude of East Asia Based on Multiple Instruments

doi: 10.11728/cjss2018.06.862 cstr: 32142.14.cjss2018.06.862
  • Received Date: 2018-02-14
  • Rev Recd Date: 2018-09-11
  • Publish Date: 2018-11-15
  • The ionospheric irregularity events observed on November 20, 2011 were analyzed using ground- and space-based instruments at Hainan station (19.5°N, 109.1°E, dip: 13.6°N) and magnetic equatorial region. The comprehensive observations of Hainan station VHF radar, ionospheric scintillation and digisonde show that strong ionospheric irregularities occurred near the sunset, and the irregularities pattern mainly appeared as radar plume and strong scintillation. Combined with the observations obtained by magnetic equatorial GPS and the C/NOFS satellite, the radar plume and strong scintillation over Hainan region near the sunset are obviously related to the primary plasma bubble generated in the magnetic equatorial region of the South China Sea.

     

  • loading
  • [1]
    BURKE W J, DONATELLI D E, SAGALYN R C, et al. Low density regions observed at high altitudes and their connection with equatorial spread F[J]. Planet. Space Sci., 1979, 27:593
    [2]
    HUANG C S, FOSTER J C, SAHAI Y. Significant depletions of the ionospheric plasma density at middle latitudes: a possible signature of equatorial spread F bubbles near the plasmapause[J]. J. Geophys. Res., 2007, A05315.DOI: 10.1029/2007JA012307
    [3]
    KELLEY M C, MAKELA J J, PAXTON L J, et al. The first coordinated ground- and space-based optical observations of equatorial plasma bubbles[J]. Geophys. Res. Lett., 2003, 30(14):1766
    [4]
    MAKELA J J, KELLEY M C. Field-aligned 777.4nm composite airglow images of equatorial plasma depletions[J]. Geophys. Res. Lett., 2003, 30(8):1442
    [5]
    TSUNODA R T, NGUYEN T T, LE M H. Effects of tidal forcing, conductivity gradient, and active seeding on the climatology of equatorial spread F over Kwajalein[J]. J. Geophys. Res. Space Phys., 2015, 120:632-653
    [6]
    WOODMAN R F, LAHOZ C. Radar observations of F region equatorial irregularities[J]. J. Geophys. Res., 1976, 81:5447-5466
    [7]
    HYSELL D L, BURCHAM J D. JULIA radar studies of equatorial spread F[J]. J. Geophys. Res., 1998, 103: 29155-29167
    [8]
    HYSELL D L. An overview and synthesis of plasma irregularities in equatorial spread F[J]. J. Atmos. Sol.-Terr. Phys., 2000, 62:1037-1056
    [9]
    HYSELL D L, BURCHAM J D. Long term studies of equatorial spread F using the JULIA radar at Jicamarca[J]. J. Atmos. Sol.-Terr. Phys., 2002, 64:1531-1543
    [10]
    TSUNODA R T. Upwelling: a unit of disturbance in equatorial spread F[J]. Progr. Earth Planet. Sci., 2015, 2(9).DOI: 10.1186/s40645-015-0038-5
    [11]
    TSUNODA R T. Time evolution and dynamics of equatorial backscatter plumes: 1. Growth phase[J]. J. Geophys. Res., 1981, 86:139-149
    [12]
    TSUNODA R T, WHITE B R. On the generation and growth of equatorial backscatter plumes, 1. Wave structure in the bottomside F layer[J]. J. Geophys. Res., 1981, 86:3610-3616
    [13]
    TSUNODA R T, LIVINGSTON R C, HANSON W B. Equatorial plasma bubbles: Vertically elongated wedges from the bottomside F layer[J]. J. Geophys. Res., 1982, 87:9171-9180
    [14]
    TSUNODA R T. On the generation and growth of equatorial backscatter plumes: 2. Scattering of the west walls of upwellings[J]. J. Geophys. Res., 1983, 88:4869-4874
    [15]
    FUKAO S, OZAWA Y, YOKOYAMA T, et al. First observations of the spatial structure of F region 3-m-scale field-aligned irregularities with the Equatorial Atmosphere Radar[J]. J. Geophys. Res., 2004, 827, A02304. DOI: 10.1029/2003JA010096
    [16]
    YOKOYAMA T, FUKAO S, YAMAMOTO M. Relationship of the onset of equatorial F-region irregularities with the sunset terminator observed with the Equatorial Atmosphere Radar[J]. Geophys. Res. Lett., 2004, 31, L24804.DOI: 10.1029/2004GL021529
    [17]
    FUKAO S, YOKOYAMA T, TAYAMA T, et al. Eastward traverse of equatorial plasma plumes observed with the Equatorial Atmosphere Radar in Indonesia[J]. Ann. Geophys., 2006, 24:1411-1418
    [18]
    PI X, MANNUCCI A J, LINDQWISTER U J, et al. Monitoring of global ionospheric irregularities using the worldwide GPS network[J]. Geophys. Res. Lett., 1997, 24(18):2283-2286
    [19]
    NISHIOKA M, SAITO A, TSUGAWA T. Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks[J]. J. Geophys. Res., 2008, 113, A05301.DOI: 10.1029/2007JA012605
    [20]
    BUHARI S M, ABDULLAH M, YOKOYAMA T, et al. Climatology of successive equatorial plasma bubbles observed by GPS ROTI over Malaysia[J]. J. Geophys. Res. Space Phys., 2017, 122.DOI: 10.1002/2016JA023202
    [21]
    HUANG C S. The characteristics and generation mechanism of small-amplitude and large-amplitude ESF irregularities observed by the C/NOFS satellite[J]. J. Geophys. Res. Space Phys., 2017, 122:8959-8973
    [22]
    SHANG Sheping, SHI Jiankui, ZHEN Weimin, et al. Morphological study of L-band ionospheric scintillations in the equatorial region[J]. Chin. J. Radio Sci., 2006, 21(3):410-415
    [23]
    SHI J K, WANG G J, REINISCH B W, et al. Relationship between strong range spread F and ionospheric scintillations observed in Hainan from 2003 to 2007[J]. J. Geophys. Res., 2011, 116, A08306.DOI: 10.1029/2011JA016806
    [24]
    SHANG Sheping, SHI Jiankui, ZHANG Beichen, et al. Characteristics of ionospheric irregularities near Eastern Asia 110°E meridian based on GPS observations[J]. Chin. J. Radio Sci., 2014, 29(4):627-633.DOI: 10.13443/j.cjors.2013071502
    [25]
    SHANG Sheping, SHI Jiankui, YAN Jingye, et al. Analysis of low latitude F region field-aligned irregularity events observed with Hainan VHF radar[J]. Chin. J. Space Sci., 2017, 37(6):702-709
    [26]
    FEJER B G, SCHERLIESS L, DEPAULA E R. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F[J]. J. Geophys. Res., 1999, 104:19859-19869
    [27]
    SU S Y, CHAO C K, LIU C H. On monthly/seasonal/longitudinal variations of equatorial irregularity occurrences and their relationship with the postsunset vertical drift velocities[J]. J. Geophys. Res., 2008, 113, A05307.DOI: 10.1029/2007JA012809
    [28]
    KELLEY M C, LARSEN M F, LAHOZ C, et al. Gravity wave initiation of equatorial spread F: a case study[J]. J. Geophys. Res., 1981, 86:9087-9100
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1506) PDF Downloads(464) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return