Citation: | WANG Shen, XIONG Shujie. Research on Transfer Orbit Based on Electric Propulsion Satellite to Halo Orbit[J]. Chinese Journal of Space Science, 2019, 39(4): 489-493. doi: 10.11728/cjss2019.04.489 |
[1] |
RICHARDSON D L. Halo orbit formulation for the ISEE-3 mission[J]. J. Guid. Cont. Dyn., 1980, 3(6):543-548
|
[2] |
REN Yuan, CUI Pingyuan, LUAN Enjie. Study of low-thrust transfer to halo orbit with invariant manifolds[J]. J. Astron., 2007, 28(5):48-53(任远, 崔平远, 栾恩杰. 基于不变流形的小推力Halo轨道转移方法研究[J]. 宇航学报, 2007, 28(5):48-53)
|
[3] |
LIU Janzhong. Missions of Sun-Earth lagrange points and design method of transfer trajectory[J]. Missiles Space Vehicle, 2009, 1:7-10(刘建忠. 日elax-elax地系拉格朗日点任务及其转移轨道设计方法[J]. 导弹与航天运载技术, 2009, 1:7-10)
|
[4] |
LI Mingtao, ZHENG Jianhua, YU Xizheng, et al. Transfer trajectory design technologies of interplanetary superhighway[J]. J. Astron., 2009, 30(1):72-81(李明涛, 郑建华, 于锡峥, 等. IPS转移轨道设计技术[J]. 宇航学报, 2009, 30(1):72-81)
|
[5] |
LI Mingtao, ZHENG Jianhua. Research on transfer trajectory correction maneuvers for libration point missions[J]. Chin. J. Space Sci., 2010, 30(6):540-546(李明涛, 郑建华. 平动点任务转移轨道中途修正研究[J]. 空间科学学报, 2010, 30(6):540-546)
|
[6] |
LI Junfeng, JIANG Fanghua. Survey of low-thrust trajectory optimization methods for deep space exploration[J]. Mech. Eng., 2011, 33(3):1-6(李俊峰, 蒋方华. 连续小推力航天器的深空探测轨道优化方法综述[J]. 力学与实践, 2011, 33(3):1-6)
|
[7] |
GAO Yang. Interplanetary travel with electric propulsion:technological progress, trajectory design, and comprehensive optimization[J]. Chin. J. Theor. Appl. Mech., 2011, 43(6):991-1019(高扬. 电火箭星际航行:技术进展, 轨道设计与综合优化[J]. 力学学报, 2011, 43(6):991-1019)
|
[8] |
LIN Shuyu. Electric Propulsion Satellite Orbit Transfer Optimization Strategy Review[C]//Proceedings of the 2nd China space security. Beijing:China's command and control system parallel space security professional committee, 2017:15(林书宇. 电推进卫星轨道转移优化策略综述[C]//第二届中国空天安全会议论文集. 北京:中国指挥与控制学会空天安全平行系统专业委员会, 2017:15)
|
[9] |
SENENT J, OCAMPO C, CAPELLA A. Low-thrust variable-specific-impulse transfers and guidance to unstable periodic orbits[J]. J. Guid. Cont. Dyn., 2012, 28(2):280-290
|
[10] |
Sukhanov A A, Eismont N A. Low thrust transfer to Sun-Earth L1 and L2 points with a constraint on the thrust direction[J]. Proc. Intern. Conf., 2002. DOI: 10.1142/9789812704849_0019
|
[11] |
ZHANG C, TOPPUTO F, BEMELLI-ZAZZERA F, et al. Low-thrust minimum-fuel optimization in the circular restricted three-body problem[J]. J. Guid. Cont. Dyn., 2015, 38(8):1-9
|
[12] |
RICHARDSON D L. Analytic construction of periodic orbits about the collinear points[J]. Cele. Mech., 1980, 22(3):241-253
|
[13] |
NEAR L, VILLAC B F, SCHEERES D J. A simple algorithm to compute hyperbolic Invariant manifolds near L1 and L2[J]. Adv. Astron. Sci., 2004, 4:243
|
[14] |
GÓMEZ G, KOON W S, LO M W, et al. Invariant manifolds, the spatial three-body problem and space mission design[J]. Adv. Astron. Sci., 2001, 109:1167-1181
|
[15] |
GUO Tieding. Study of Indirect and Pseudo Spectral Methods for Low Thrust Trajectory Optimization in Deep Space Exploration[D]. Beijing:Tsinghua University, 2012(郭铁丁. 深空探测小推力轨迹优化的间接法与伪谱法研究[D]. 北京:清华大学, 2012)
|
[16] |
LI J. Fuel-optimal low-thrust formation reconfiguration via radau pseudo spectral method[J]. Adv. Space Res., 2016, 58(1):1-16
|