Volume 39 Issue 5
Sep.  2019
Turn off MathJax
Article Contents
ZHANG Yanan, WU Xiaocheng, HU Xiong. Thermospheric Density Prediction Based on Electron Density Assimilation[J]. Chinese Journal of Space Science, 2019, 39(5): 629-637. doi: 10.11728/cjss2019.05.629
Citation: ZHANG Yanan, WU Xiaocheng, HU Xiong. Thermospheric Density Prediction Based on Electron Density Assimilation[J]. Chinese Journal of Space Science, 2019, 39(5): 629-637. doi: 10.11728/cjss2019.05.629

Thermospheric Density Prediction Based on Electron Density Assimilation

doi: 10.11728/cjss2019.05.629 cstr: 32142.14.cjss2019.05.629
  • Received Date: 2018-10-26
  • Rev Recd Date: 2019-04-05
  • Publish Date: 2019-09-15
  • Using the thermosphere ionosphere coupling model TIEGCM and the thermospheric and ionospheric observations, the assimilation and forecast experiments with simulated and measured data are carried out based on the ensemble Kalman filter method respectively. The results of the simulated assimilation experiments with different thermospheric ionospheric parameters show that the temperature is the key parameter to improve the thermospheric density. In the assimilation experiments, the temperature is taken as the parameter of state vector. The optimization results show that the root mean square error of relative deviation of atmospheric density predicted by the model is reduced from 38% to 27% in 48 hours, and the stabilization time of assimilation is at least 30 hours. However, it may need at least 30 hours to achieve the best assimilation results when only the temperature is estimated, and the e-folding time of neutral density is 34 hours. The accuracy of the neutral density prediction in the TIEGCM has been significantly improved, which indicates that it is feasible to improve the prediction accuracy of the neutral density of the thermosphere using ionospheric observations

     

  • loading
  • [1]
    MARCOS F, LAI S, HUANG C, et al. Towards next level satellite drag modeling[C]//AIAA Atmospheric and Space Environments Conference, Reston:AIAA, 2010
    [2]
    JACCHIA L G. New static models of the thermosphere and exosphere with empirical temperature profiles[J]. Sao Spec. Rep., 1971, 313:3138-3144
    [3]
    HEDIN A E, SALAH J E, EVANS J V, et al. A global thermospheric model based on mass-spectrometer and incoherent-scatter data MSIS, 1. N2 density and temperature[J]. J. Geophys. Res., 1977, 82:2139-2147
    [4]
    BARLIER F, BERGER C, FALIN J L, et al. Thermospheric model based on satellite drag data[J]. Ann. De Geophys., 1978, 34:9-24
    [5]
    BRUINSMA S, THUILLIER G, BARLIER F. The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary:accuracy and properties[J]. J. Atmos. Sol.-Terr. Phys., 2003, 65:1053-1070
    [6]
    MARCOS F. New satellite drag modeling capabilities[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevoda:AIAA, 2006. DOI: 10.2514/6.2006-470
    [7]
    MARCOS F A, KENDRA M J, GRIFFIN J M, et al. Precision low Earth orbit determination using atmospheric density calibration[J]. J. Astronaut. Sci., 1998, 46:395-409
    [8]
    MIAO Juan, LIU Siqing, LI Zhitao, et al. Atmospheric density calibration using the real-time satellite observation[J]. Chin. J. Space Sci., 2011, 31(4):459-466(苗娟, 刘四清, 李志涛, 等. 基于实时观测数据的大气密度模式修正[J]. 空间科学学报, 2011, 31(4):459-466)
    [9]
    CHEN Xuxing, HU Xiong, XIAO Cunying, et al. Correction method of the low earth orbital neutral density prediction based on the satellites data and NRLMSISE-00 model[J]. Chin. J. Geophys., 2013, 56(10):3246-3254(陈旭杏, 胡雄, 肖存英, 等. 基于卫星数据和NRLMSISE-00模型的低轨道大气密度预报修正方法[J]. 地球物理学报, 2013, 56(10):3246-3254)
    [10]
    LI Xie, TANG Geshi, LI Zheng, et al. A method for calibrating empirical density model based on temperature parameters[J]. Mann. Spaceflight., 2015, 21(1):48-52(李勰, 唐歌实, 李正, 等. 基于温度参数的经验密度模式修正方法[J]. 载人航天, 2015, 21(1):48-52)
    [11]
    RICHMOND A D, RIDLEY E C, ROBLE R G. A thermosphere/ionosphere general-circulation model with coupled electrodynamics[J]. Geophys. Res. Lett., 1992, 19:601-604
    [12]
    RIDLEY A J, DENG Y, TOTH G. The global ionosphere-thermosphere model[J]. J Atmos. Sol.-Terr. Phys., 2006, 68:839-864
    [13]
    FULLER-ROWELL T, WU F, AKMAEV R, et al. A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics[J]. J. Geophys. Res. Space Phys., 2010, 115.DOI: 10.1029/2010JA015524
    [14]
    LIU H L, FOSTER B T, HAGAN M E, et al. Thermosphere extension of the whole atmosphere community climate model[J]. J. Geophys. Res., 2010, 115.DOI:10. 1029/2010JA015586
    [15]
    MOROZOV A V, RIDLEY A J, BERNSTEIN D S, et al. Data assimilation and driver estimation for the Global Ionosphere-Thermosphere Model using the ensemble adjustment Kalman filter[J]. J. Atmos. Sol.-Terr. Phys., 2013, 104:126-136
    [16]
    MATSUO T, LEE I T, ANDERSON J L. Thermospheric mass density specification using an ensemble Kalman filter[J]. J. Geophys. Res., 2013, 118:1339-1350
    [17]
    EMMERT J T, HERNANDEZ G, JARVIS M J, et al. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions:2. High-latitude circulation and interplanetary magnetic field dependence[J]. J. Geophys. Res., 2006, 111.DOI: 10.1029/2006JA011948
    [18]
    MAKELA J J, FISHER D J, MERIWETHER J W, et al. Near-continual ground-based nighttime observations of thermospheric neutral winds and temperatures over equatorial Brazil from 2009 to 2012[J]. J. Atmos. Sol.-Terr. Phys., 2013, 103:94-102
    [19]
    DATTA-BARUA S, BUST G S, CROWLEY G, et al. Neutral wind estimation from 4-D ionospheric electron density images[J]. J. Geophys. Res., 2009, 114.DOI:10. 1029/2008JA014004
    [20]
    SCHERLIESS L, THOMPSON D C, SCHUNK R W. Ionospheric dynamics and drivers obtained from a physics-based data assimilation model[J]. Radio Sci., 2009, 44(1). DOI: 10.1029/2008rs004068
    [21]
    MATSUO T, ARAUJO-PRADERE E A. Role of thermosphere-ionosphere coupling in a global ionospheric specification[J]. Radio Sci., 2011, 46.DOI: 10.1029/2010RS004576
    [22]
    ZHANG Y N, WU X C, HU X. Effects of estimating the ionospheric and thermospheric parameters on electron density forecasts[J]. Sci. China Earth Sci., 2018, 61(12):1875-1887
    [23]
    HSU C T, MATSUO T, WANG W B, et al. Effects of inferring unobserved thermospheric and ionospheric state variables by using an Ensemble Kalman Filter on global ionospheric specification and forecasting[J]. J. Geophys. Res., 2014, 119:9256-9267
    [24]
    CHARTIER A T, MATSUO T, ANDERSON J L, et al. Ionospheric data assimilation and forecasting during storms[J]. J. Geophys. Res., 2016, 121:764-778
    [25]
    CHEN C H, LIN C H, MATSUO T, et al. Ionospheric data assimilation with thermosphere-ionosphere-electrodynamics general circulation model and GPS-TEC during geomagnetic storm conditions[J]. J. Geophys. Res., 2016, 121:5708-5722
    [26]
    ZHANG Yanan, Wu Xiaocheng, HU Xiong. TIEGCM ensemble Kalman filter assimilation model design and premilinary results[J]. Chin. J. Space Sci., 2017, 37(2):168-176(张亚楠, 吴小成, 胡雄. TIEGCM集合卡尔曼滤波同化模型设计及初步试验[J]. 空间科学学报, 2017, 37(2):168-176)
    [27]
    ROBLE R G, RIDLEY E C, RICHMOND A D, et al. A coupled thermosphere/ionosphere general circulation model[J]. Geophys. Res. Lett., 1988, 15(12):1325-1328
    [28]
    QIAN L, SOLOMON S C. Thermospheric density:an overview of temporal and spatial variations[J]. Space Sci. Rev., 2012, 168(1-4):147-173
    [29]
    EVENSEN G. The ensemble Kalman filter:theoretical formulation and practical implementation[J]. Ocean Dyn., 2003, 53:343-367
    [30]
    EVENSEN G. Data Assimilation:the Ensemble Kalman Filter[M]. New York:Springer, 2006
    [31]
    REIGBER CH, LüHR H, SCHWINTZER P. Champ mission status[J]. Adv. Space Res., 2002, 30(2):129-134
    [32]
    SUTTON E K, NEREM R S, FORBES J M. Density and winds in the thermosphere deduced from accelerometer data[J]. J. Spacecraft Rockets, 2007, 44(6):1210-1219
    [33]
    ROBLE R G. Energetics of the mesosphere and thermosphere. The upper mesosphere and lower thermosphere:a review of experiment and theory[J]. Geophys. Monograph Ser., 1995, 87:1-21
    [34]
    MATSUO T, FORBES J M. Principal modes of thermospheric density variability:empirical orthogonal function analysis of CHAMP 2001-2008 data[J]. J Geophys. Res., 2010, 115.DOI: 10.1029/2009JA015109
    [35]
    JEE G, BURNS A G, WANG W, et al. Duration of an ionospheric data assimilation initialization of a coupled thermosphere-ionosphere model[J]. Space Weather, 2007, 5(1).DOI: 10.1029/2006sw000250
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1391) PDF Downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return