Volume 39 Issue 5
Sep.  2019
Turn off MathJax
Article Contents
ZHANG Chu, HE Jianwu, DUAN Li. Parameter Identification of Drag-free System Based on Extended State Observer[J]. Chinese Journal of Space Science, 2019, 39(5): 670-676. doi: 10.11728/cjss2019.05.670
Citation: ZHANG Chu, HE Jianwu, DUAN Li. Parameter Identification of Drag-free System Based on Extended State Observer[J]. Chinese Journal of Space Science, 2019, 39(5): 670-676. doi: 10.11728/cjss2019.05.670

Parameter Identification of Drag-free System Based on Extended State Observer

doi: 10.11728/cjss2019.05.670 cstr: 32142.14.cjss2019.05.670
  • Received Date: 2018-09-25
  • Rev Recd Date: 2019-03-26
  • Publish Date: 2019-09-15
  • In this paper, in-orbit parameter identification problem of drag-free control system is studied. Since the drag-free system is not stable, it is necessary to design controllers to stablize this system, then the system can be identificated. According to the principle of active disturbance rejection control, the extended state observer is designed to estimate the disturbance and state of different control loops of the system. Based on the state and disturbance estimation values, the controller is designed to stabilize the system. A closed-loop parameter identification method for multi-input and multi-output systems based on extended state observer is proposed. In order to improve the identification effect in practical applications, the noise in the observed state is suppressed by introducing an integral filter, and the noise suppression mechanism is theoretically explained. Finally, this method is applied to a single-axis non-drag model similar to LISA Pathfinder, and the system dynamics parameters are estimated. The numerical simulation experiments have verified the validity and practicability of the proposed identification method.

     

  • loading
  • [1]
    ARMANO M, BENEDETTI M, BOGENSTAHL J, et al. LISA Pathfinder:the experiment and the route to LISA[J]. Class. Quantum. Gravity, 2009, 26(9):1159-1165
    [2]
    ZIEGLER T, FICHTER W. Test mass stiffness estimation for the LISA Pathfinder drag-free system[R]//Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, series GNC. Hilton Head:AIAA, 2007:2007-6669
    [3]
    JATEGAONKAR R V. Flight Vehicle System Identification:A Time-Domain Methodology[M]. Reston:American Institute of Aeronautics and Astronautics, Inc., 2015
    [4]
    GUILHERME M S, FILHO W C L, THEIL S. Strategies for in-orbit calibration of drag-free control systems[J]. Aerosp. Sci. Technol., 2008, 12(5):365-375
    [5]
    HUANG Yuancan, HAN Jingqing. Constinuous-time system identification with the extended states observer[J]. Control Decision, 1998, 13(4):381-384(黄远灿, 韩京清. 扩张状态观测器用于连续系统辨识[J]. 控制与决策, 1998, 13(4):381-384)
    [6]
    ZHANG Rong, HAN Jingqing. Parameter identification by model compensation auto disturbance rejection controller[J]. Control Theory Appl., 2000, 17(1):79-81(张荣, 韩京清. 用模型补偿自抗扰控制器进行参数辨识[J]. 控制理论与应用, 2000, 17(1):79-81)
    [7]
    NIE Zhuoyun, GUO Dongsheng, LIU Ruijuan, et al. Parameter identification for adjustable system based on extended state observer and experimental study[J]. Control Decision, 2017, 32(10):1905-1909(聂卓赟, 郭东生, 刘瑞娟, 等. 基于扩张状态观测器的可调系统参数辨识与实验[J]. 控制与决策, 2017, 32(10):1905-1909)
    [8]
    PRADELS G, TOUBOUL P. In-orbit calibration approach of the microscope experiment for the test of the equivalence principle at 10e-15[J]. Class. Quantum. Gravity, 2003, 20:2677
    [9]
    GRYNAGIER A, ZIEGLER T, FICHTER W. Identification of dynamic parameters for a one-axis drag-free gradiometer[J]. IEEE Trans. Aerosp. Electron. Syst., 2013, 49(1):341-355
    [10]
    CONGEDO G, FERRAIOLI L, HUELLER M, et al. Time domain maximum likelihood parameter estimation in LISA Pathfinder data analysis[J]. Phys. Rev. D:Particles Fields, 2012, 85(12):341-369
    [11]
    NOFRARIAS M, FERRAIOLI L, CONGEDO G, et al. Parameter estimation in LISA Pathfinder operational exercises[J]. J. Phys.:Conf. Ser., 2012, 363(1):425-429
    [12]
    ZHENG Q, CHEN Z, GAO Z. A practical approach to disturbance decoupling control[J]. Control Eng. Pract., 2009, 17(9):1016-1025
    [13]
    GAO Z. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the American Control Conference. Denver:Colorado, 2003:4989-4996
    [14]
    XIAO Deyun. Theory of System Identification with Applications[M]//Beijing:Tsinghua University Press, 2014(萧德云. 系统辨识理论及应用[M]. 北京:清华大学出版社, 2014)
    [15]
    ANTONUCCI F, ARMANO M, AUDLEY H, et al. From laboratory experiments to LISA Pathfinder:achieving LISA geodesic motion[J]. Class. Quantum. Gravity, 2011, 28(9):2075-2085
    [16]
    GATH P, FICHTER W, KERSTEN M, et al. Drag free and attitude control system design for the LISA Pathfinder mission[C]//AIAA Guidance, Navigation & Control Conference & Exhibit. Providence, Rhode Island:AIAA, 2004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1300) PDF Downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return