Citation: | ZHANG Chu, HE Jianwu, DUAN Li. Parameter Identification of Drag-free System Based on Extended State Observer[J]. Chinese Journal of Space Science, 2019, 39(5): 670-676. doi: 10.11728/cjss2019.05.670 |
[1] |
ARMANO M, BENEDETTI M, BOGENSTAHL J, et al. LISA Pathfinder:the experiment and the route to LISA[J]. Class. Quantum. Gravity, 2009, 26(9):1159-1165
|
[2] |
ZIEGLER T, FICHTER W. Test mass stiffness estimation for the LISA Pathfinder drag-free system[R]//Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, series GNC. Hilton Head:AIAA, 2007:2007-6669
|
[3] |
JATEGAONKAR R V. Flight Vehicle System Identification:A Time-Domain Methodology[M]. Reston:American Institute of Aeronautics and Astronautics, Inc., 2015
|
[4] |
GUILHERME M S, FILHO W C L, THEIL S. Strategies for in-orbit calibration of drag-free control systems[J]. Aerosp. Sci. Technol., 2008, 12(5):365-375
|
[5] |
HUANG Yuancan, HAN Jingqing. Constinuous-time system identification with the extended states observer[J]. Control Decision, 1998, 13(4):381-384(黄远灿, 韩京清. 扩张状态观测器用于连续系统辨识[J]. 控制与决策, 1998, 13(4):381-384)
|
[6] |
ZHANG Rong, HAN Jingqing. Parameter identification by model compensation auto disturbance rejection controller[J]. Control Theory Appl., 2000, 17(1):79-81(张荣, 韩京清. 用模型补偿自抗扰控制器进行参数辨识[J]. 控制理论与应用, 2000, 17(1):79-81)
|
[7] |
NIE Zhuoyun, GUO Dongsheng, LIU Ruijuan, et al. Parameter identification for adjustable system based on extended state observer and experimental study[J]. Control Decision, 2017, 32(10):1905-1909(聂卓赟, 郭东生, 刘瑞娟, 等. 基于扩张状态观测器的可调系统参数辨识与实验[J]. 控制与决策, 2017, 32(10):1905-1909)
|
[8] |
PRADELS G, TOUBOUL P. In-orbit calibration approach of the microscope experiment for the test of the equivalence principle at 10e-15[J]. Class. Quantum. Gravity, 2003, 20:2677
|
[9] |
GRYNAGIER A, ZIEGLER T, FICHTER W. Identification of dynamic parameters for a one-axis drag-free gradiometer[J]. IEEE Trans. Aerosp. Electron. Syst., 2013, 49(1):341-355
|
[10] |
CONGEDO G, FERRAIOLI L, HUELLER M, et al. Time domain maximum likelihood parameter estimation in LISA Pathfinder data analysis[J]. Phys. Rev. D:Particles Fields, 2012, 85(12):341-369
|
[11] |
NOFRARIAS M, FERRAIOLI L, CONGEDO G, et al. Parameter estimation in LISA Pathfinder operational exercises[J]. J. Phys.:Conf. Ser., 2012, 363(1):425-429
|
[12] |
ZHENG Q, CHEN Z, GAO Z. A practical approach to disturbance decoupling control[J]. Control Eng. Pract., 2009, 17(9):1016-1025
|
[13] |
GAO Z. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the American Control Conference. Denver:Colorado, 2003:4989-4996
|
[14] |
XIAO Deyun. Theory of System Identification with Applications[M]//Beijing:Tsinghua University Press, 2014(萧德云. 系统辨识理论及应用[M]. 北京:清华大学出版社, 2014)
|
[15] |
ANTONUCCI F, ARMANO M, AUDLEY H, et al. From laboratory experiments to LISA Pathfinder:achieving LISA geodesic motion[J]. Class. Quantum. Gravity, 2011, 28(9):2075-2085
|
[16] |
GATH P, FICHTER W, KERSTEN M, et al. Drag free and attitude control system design for the LISA Pathfinder mission[C]//AIAA Guidance, Navigation & Control Conference & Exhibit. Providence, Rhode Island:AIAA, 2004
|