Citation: | ZHEN Xiaojuan, HUANG Yifan, YANG Shengsheng, FENG Zhanzu, BA Dedong, WANG Jun, ZHUANG Jianhong, YIN Hong. Irradiation Effects on Nano Carbon Materials[J]. Chinese Journal of Space Science, 2019, 39(6): 787-799. doi: 10.11728/cjss2019.06.787 |
[1] |
CHENG Weiping. Development of PAN-based carbon fibers in aerospace[J]. Aerosp. Mater. 5 Technol., 2015, 6:11-16
|
[2] |
ZHAO Dongmei, LI Zhenwei, LIU Lingdi, et al. Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta. Chem. Sin., 2014, 72:185-200
|
[3] |
IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1 nm diameter[J]. Nature, 1993, 363(6430):603-605
|
[4] |
WANG Ce. The Study of Preparation and Properties for Carbon Nanotubes Composites[D]. Lanzhou:Lanzhou University, 2008
|
[5] |
LIU Yuanpeng. Studies on Wrinkling Behaviour and Mechanical Property of Wrinkled Graphene[D]. Harbin:Institute of Technology, 2014
|
[6] |
NOVOSELOV K S, FALKOL V I, COLOMBO, et al. A road map for graphene[J]. Nature, 2012, 490:192-200
|
[7] |
MEYER M, JOHNSON L, PALASZEWSKI B, et al. NASA technology roadmap:In-space propulsion systems[J]. Natl. Aeronaut. Space Adm., 2012. DOI: http://ntrs.nasa.gov/search.jsp?R=20110005503
|
[8] |
GAO Hong, XING Yan, LIU Botian, et al. Progress of nanotechnology research in NASA[J]. Spacecraft Environ. Eng., 2016, 33(5):562-569
|
[9] |
LIU Yuming, LIU Xiangpeng, TONG Jingyu, et al. Real-time detection of space atomic oxygen based on carbon nanotube gas sensor[J]. Spacecraft Environ. Eng., 2013, 30(3):230-234
|
[10] |
LIU Yuming, LI Man, LIU Xiangpeng, et al. Effect of atomic oxygen on electric properties of graphene films[J]. J. Mater. Eng., 2017, 8:9-13
|
[11] |
ZHANG H J, REN S M, PU J B, et al. Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation[J]. Appl. Surf. Sci., 2018, 444:28-35
|
[12] |
LI Z H, CHEN S Y, NAMBIAR S, et al. PMMA/MWCNT nanocomposite for proton radiation shielding applications[J]. Nanotechnology, 2016, 27(23):10
|
[13] |
EMILIE J S. Graphene in the sky and beyond[J]. Nat. Nanotechnol., 2014, 9:745-747
|
[14] |
TAO Hongren, LIU Siqing, LIN Ruilin, et al. Central radiation model of proton radiation belt[J]. Chin. J. Space Sci., 2015, 35(3):293-305
|
[15] |
FANG Haowei. Investigation on Free Radical Evolution and Optical Degeneration of PI under Combined Irradiation[D]. Harbin:Harbin Institute of Technology, 2014
|
[16] |
ZHAO Lei. In Partial Fulfillment of the Requirements[D]. Dalian:Dalian Maritime University, 2016
|
[17] |
SHEN Zicai. Space Radiation Environment Engineering[M]. Beijing:China Aerospace Publishing House, 2013:120-146
|
[18] |
ELISABETH A, TILMAN S, STEFAN K, et al. Electrical behavior of carbon nanotubes under low-energy proton irradiation[J]. J. Nucl. Mater., 2017, 495:299-305
|
[19] |
KRASHENINNIKOV A V, NORDLUND K. Ion and electron irradiation-induced effects in nanostructured materials[J]. J. Appl. Phy., 2010, 107(7):1-36
|
[20] |
WU X, MU F W, WANG Y H, et al. Application of atomic simulation methods on the study of graphene nanostructure fabrication by particle beam irradiation:a review[J]. Comp. Mater. Sci., 2018, 149:98-106
|
[21] |
PENG H B, SUN M L, ZHANG D F, et al. Raman spectroscopy of graphene irradiated with highly charged ions[J]. Surf. Coat. Tech., 2016, 306:171-175
|
[22] |
KIRAN J, JINDAL V K, BHARADWAJ L M, et al. Damaged carbon nanotubes get healed by ion irradiation[J]. J. Appl. Phy., 2010, 108:034302
|
[23] |
LIU H, YUAN Y P, SHANG Y T, et al. Structural changes and electrical properties of nanowelded multiwalled carbon nanotube junctions[J]. Appl. Opt., 2018, 57:7435-7439
|
[24] |
KUMARI R, TYAGI P K, PURI N K, et al. Electron irradiation induced wall-to-wall joining of multiwalled carbon nanotubes[J]. Appl. Surf. Sci., 2018, 453:153-158
|
[25] |
KOTAKOSHI J, MEYER J C, KURASCH S, et al. Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation[J]. Phys. Rev., 2011, 83(24):1-6
|
[26] |
BANHART F, LI J X, KRASHENINNIKOV A V, et al. Carbon nanotubes under electron irradiation:stability of the tubes and their action as pipes for atom transport[J]. Phys. Rev. B, 2005, 71(24):1-4
|
[27] |
CHANG S Q, LI J, HAN W, et al. Fabrication and high radiation-resistant properties of functionalized carbon nanotube reinforced novolac epoxy resin nanocomposite coatings[J]. RSC Adv., 2016, 6(63):58296-58301
|
[28] |
RUI E, YANG J Q, LI X J, et al. Change of surface morphology and structure of multi-walled carbon nanotubes film caused by proton irradiation with 170keV[J]. Appl. Surf. Sci., 2013, 287:172-177
|
[29] |
ANTONIO V, MACRO V, NICOLETTA D, et al. A conductive surface coating for Si-CNT radiation detectors[J]. Nucl. Instrum. Methods Phys. Res. A, 2015, 790:14-18
|
[30] |
ELSEHLY E M, CHECHENIN N G, MAKUNIN A V, et al. Enhancement of CNT-based filters efficiency by ion beam irradiation[J]. Rad. Phys. Chem., 2018, 146:19-25
|
[31] |
KYATSANDRA S, WILKINS R. Total ionizing dose X-ray radiation effects on MWCNT/PMMA thin film composites[J]. IEEE Trans. Nanotech., 2015, 14(1):152-158
|
[32] |
GIGAX J G, BRADFORD P D, SHAO L. Radiation-induced mechanical property changes of CNT yarn[J]. Nucl. Instrum. Methods Phys. Res. B, 2017, 409:268-271
|
[33] |
DENG J H, HOU X G, CHENG L, et al. Irradiation damage determined field emission of ion irradiated carbon nanotubes[J]. Appl. Mater. Inter., 2014, 6:5137-5143
|
[34] |
RIUS G, VERDAGUER A, CHAVES F A, et al. Characterization at the nanometer scale of local electron beam irradiation of CNT based devices[J]. Microelec. Eng., 2008, 85:1413-1416
|
[35] |
CHEN Y, ZHAO H Y, WU Y Y, et al. Effects of proton irradiation on structures and photo-catalytic property of Nano-TiO2/CNTs films[J]. Rad. Phys. Chem., 2018, 153:79-85
|
[36] |
YAN L, ZHOU G Y, ISHAP A, et al. Improving the electrical conductivity of multi-walled carbon nanotube networks by H ion beam irradiation[J]. Carbon, 2011, 49:2141-2161
|
[37] |
GU J J, HUANG L R, SHI W Q, et al. Atomic simulations of effect on thermal conductivity of ion-irradiated grapheme[J]. Phys. B:Condens. Mat., 2019, 554:40-44
|
[38] |
LI W S, WANG X W, ZHANG X T, et al. Mechanism of the defect formation in supported graphene by energetic heavy ion irradiation:the substrate effect[J]. Sci. Rep., 2015, 5(9935).DOI: 10.1038/srep09935
|
[39] |
YANG G, KIN B, KIN K, et al. Energy and dose dependence of proton-irradiation damage in graphene[J]. RSC Adv., 2015, 5:31861-31865
|
[40] |
ILYIN A M, GUSEINOV N R, NEMKAEVA R R, et al. Bridge-like radiation defects in few-layer graphene[J]. Nucl. Instrum. Methods Phys. Res. B, 2013, 315:192-196
|
[41] |
WU X, ZHAO H Y, YAN D, et al. Doping of graphene using ion beam irradiation and the atomic mechanism[J]. Comp. Mater. Sci., 2017, 129:184-193
|
[42] |
ÅHLGREN E H, KOTAKOSKI J, LEHTINEN O, et al. Ion irradiation tolerance of graphene as studied by atomistic simulations[J]. Appl. Phys. Lett., 2012, 100(23):1-4
|
[43] |
FISCHBEIN M D, DRNDIC M. Electron beam nanosculpting of suspended graphene sheets[J]. Appl. Phys. Lett., 2008, 93:107-113
|
[44] |
KIM K J, CHOI J, LEE H, et al. Effects of 1MeV electron beam irradiation on multilayer graphene grown on 6H-SiC[J]. J. Phys. Chem. C, 2008, 112:13062-13064
|
[45] |
WU K H, CHENG H H, MOHAMMAD A A, et al. Electron-beam writing of deoxygenated micro-patterns on graphene oxide film[J]. Carbon, 2015, 95:738-745
|
[46] |
FEMI O J D, YAO K, ROCCAPRIORE K, et al. Effects of high-dosage focused electron-beam irradiation at energies ≤ 30keV on graphene on SiO2[J]. Appl. Surf. Sci., 2019, 469:325-330
|
[47] |
DUME L F, FENG C F, HE L, et al. Tuning the grade of graphene:gamma ray irradiation of free-standing graphene oxide films in gaseous phase[J]. Appl. Surf. Sci., 2014, 322:126-135
|
[48] |
MALINSKY P, GUTRONEO M, MACKOVA A, et al. Graphene oxide layers modified by irradiation with 1.2MeV He+ Ions[J]. Surf. Coat. Tech., 2018, 342:220-225
|
[49] |
JWAN K, MIRA P, HYEK S, et al. Easy preparation and characterization of graphene using liquid nitrogen and electron beam irradiation[J]. Mater. Lett., 2015, 149:15-17
|
[50] |
OLEJNICZAK A, NEBOGATIKOVA N A, FROLOV A V. Swift heavy-ion irradiation of Graphene Oxide:Localized reduction and formation of sp-hybridized carbon chains[J]. Carbon, 2019, 141:390-399
|
[51] |
SLOBODIAN O M, TIAGULSKYI, NIKOLENKO A S, et al. Micro-raman spectroscopy and electrical conductivity of graphene layer on SiO2 dielectric subjected to electron beam irradiation[J]. Mater. Res. Express., 2018, 5:1-11
|
[52] |
FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nat. Nanotechnol., 2013, 8(4):235-246
|
[53] |
CANCADO L G, JORIO A, MARTINES E H, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J]. Nano. Lett., 2011, 11:3190-3196
|
[54] |
COMPAGNINI G, GIANNAZZO F, SONDE S, et al. Ion irradiation and defect formation in single layer grapheme[J]. Carbon, 2009, 47:3201-3207
|
[55] |
GUPTA S, HEINTZMAN E, JASINSKI J. Nanocarbon hybrids of graphene-based materials and ultradispersed diamond:investigating structure and hierarchical defects evolution with electron-beam irradiation[J]. J. Raman Spectrosc., 2015, 46:509-523
|
[56] |
TEWELDEBRHAN D, BALANDIN A A. Modification of graphene properties due to electron-beam irradiation[J]. Appl. Phys. Lett., 2009, 94(1):1-3
|
[57] |
MATHEW S, CHAN T K, ZHAN D, et al. Mega-electron-volt proton irradiation on supported and suspended graphene:a Raman spectroscopic layer dependent study[J]. J. Appl. Phy., 2011, 110(8):1-9
|
[58] |
ANASTASI A A, VALSESIB A, COLPO P, et al. Raman spectroscopy of gallium ion irradiated grapheme[J]. Diam. Relat. Mater., 2018, 89:163-173
|
[59] |
GU J J, HUANG L, SHI W Q. Atomic simulations of effect on thermal conductivity of ion-irradiated grapheme[J]. Phy. B:Condens. Mat., 2019, 554:40-44
|
[60] |
TYAGI C, KHAN S A, OJHA S, et al. Effect of carbon ion-beam irradiation on Graphene Oxide film[J]. Vacuum, 2018, 154:259-263
|
[61] |
TYAGI T, LAKSHMI G B V S, KUMAR S, et al. Structural changes in Graphene Oxide thin film by electron-beam irradiation[J]. Nucl. Instrum. Meth. Phys. Res. B, 2016, 379:171-175
|
[62] |
CHILDRES I, JAUREGUI L A, FOXE M, et al. Effect of electron-beam irradiation on graphene field effect devices[J]. Appl. Phys. Lett., 2010, 97(17):1-3
|
[63] |
LEE S, SEO J, HONG J, et al. Proton irradiation energy dependence of defect formation in grapheme[J]. Appl. Sur. Sci., 2015, 344:52-56
|
[64] |
GUO L, CAO S Z, WANG L X. Electron beam irradiation of fluorinated grapheme[J]. Inter. J. Mod. Phys. B, 2017, 3132:5
|
[65] |
LIU X, PU J, WANG L, et al. Novel DLC/ionic liquid/graphene nanocomposite coatings towards high-vacuum related space applications[J]. J. Mater. Chem. A, 2013, 1:3797-3809
|
[66] |
FAN X Q, WANG L P. Graphene with outstanding anti-irradiation capacity as multialkylated cyclopentanes additive toward space application[J]. Sci. Rep., 2015, 5(1):1-12
|
[67] |
JIN Y K, YEONG H G, JIN Y, et al. An effects of proton irradiation on graphene-based supercapacitors[J]. Mater. Res., 2018, 6(1).DOI: 10.1088/2053-1591/aae46e
|
[68] |
KUMAR S, KUMAR A, TRIPATHI A, et al. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation[J]. J. Appl. Phys., 2018, 123:161533
|
[69] |
LIU P, QI W, AN W Z, et al. The changes of absorption and catalytic capacity on reduced graphene oxide after electron beam irradiation[J]. Nano, 2015, 10:8
|
[70] |
KWONA K J, CHOA H Y, NA H G, et al. Improvement of gas sensing behavior in reduced Graphene Oxides by electron-beam irradiation[J]. Sensor. Actuat. B, 2014, 203:143-149
|
[71] |
KAUSHIK P D, IVANOV G, LIN P C, et al. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application[J]. Appl. Surf., Sci., 2017, 403:707-716
|
[72] |
VOITSIHOVSKA O O, RUDENKO R M, POVARCHUK V Y, et al. The effect of electron irradiation on the electrical properties of reduced graphene oxide paper[J]. Mater. Lett., 2019, 236:334-336
|
[73] |
LOEBLEIN M, BOLKER A, TSANG S H, et al. 3D graphene-infused polyimide with enhanced electrothermal performance for long-term flexible space applications[J]. Small, 2015, 11:6425-6434
|
[74] |
BHARTI M L, DUTT S, RATURI R, et al. Structural modifications of PMMA and PMMA/CNT matrix by swift heavy ions irradiation[J]. Mater. Sci. Eng., 2017, 225:1-8
|