Volume 39 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
ZHEN Xiaojuan, HUANG Yifan, YANG Shengsheng, FENG Zhanzu, BA Dedong, WANG Jun, ZHUANG Jianhong, YIN Hong. Irradiation Effects on Nano Carbon Materials[J]. Chinese Journal of Space Science, 2019, 39(6): 787-799. doi: 10.11728/cjss2019.06.787
Citation: ZHEN Xiaojuan, HUANG Yifan, YANG Shengsheng, FENG Zhanzu, BA Dedong, WANG Jun, ZHUANG Jianhong, YIN Hong. Irradiation Effects on Nano Carbon Materials[J]. Chinese Journal of Space Science, 2019, 39(6): 787-799. doi: 10.11728/cjss2019.06.787

Irradiation Effects on Nano Carbon Materials

doi: 10.11728/cjss2019.06.787 cstr: 32142.14.cjss2019.06.787
  • Received Date: 2018-11-19
  • Rev Recd Date: 2019-09-09
  • Publish Date: 2019-11-15
  • Carbon nanotubes (CNT) and graphene are emerging materials in the nano carbon family, which have received much attention in recent years for their remarkable physical properties. The excellent electrical, thermal and mechanical properties of CNT and graphene make them to be a promising candidate for aerospace engineering. In the harsh space environment, irradiation effect may cause the damage even failure of spacecraft materials, which is the key factor to determine the application of new nano carbon materials in space engineering. This paper focuses on the recent progress of electron and ion irradiation effect on CNT and graphene. The production and the type of defects, the application of irradiation effect in material preparation and functional modification, the irradiation effect on properties of devices and the space adapt ability are discussed. The irradiation effect on nano carbon composite and the influence mechanism of defects on the properties of nano carbon systems also are discussed. By summarizing the previous researches, the current problems are listed. Finally, the future work in space application is forecasted.

     

  • loading
  • [1]
    CHENG Weiping. Development of PAN-based carbon fibers in aerospace[J]. Aerosp. Mater. 5 Technol., 2015, 6:11-16
    [2]
    ZHAO Dongmei, LI Zhenwei, LIU Lingdi, et al. Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta. Chem. Sin., 2014, 72:185-200
    [3]
    IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1 nm diameter[J]. Nature, 1993, 363(6430):603-605
    [4]
    WANG Ce. The Study of Preparation and Properties for Carbon Nanotubes Composites[D]. Lanzhou:Lanzhou University, 2008
    [5]
    LIU Yuanpeng. Studies on Wrinkling Behaviour and Mechanical Property of Wrinkled Graphene[D]. Harbin:Institute of Technology, 2014
    [6]
    NOVOSELOV K S, FALKOL V I, COLOMBO, et al. A road map for graphene[J]. Nature, 2012, 490:192-200
    [7]
    MEYER M, JOHNSON L, PALASZEWSKI B, et al. NASA technology roadmap:In-space propulsion systems[J]. Natl. Aeronaut. Space Adm., 2012. DOI: http://ntrs.nasa.gov/search.jsp?R=20110005503
    [8]
    GAO Hong, XING Yan, LIU Botian, et al. Progress of nanotechnology research in NASA[J]. Spacecraft Environ. Eng., 2016, 33(5):562-569
    [9]
    LIU Yuming, LIU Xiangpeng, TONG Jingyu, et al. Real-time detection of space atomic oxygen based on carbon nanotube gas sensor[J]. Spacecraft Environ. Eng., 2013, 30(3):230-234
    [10]
    LIU Yuming, LI Man, LIU Xiangpeng, et al. Effect of atomic oxygen on electric properties of graphene films[J]. J. Mater. Eng., 2017, 8:9-13
    [11]
    ZHANG H J, REN S M, PU J B, et al. Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation[J]. Appl. Surf. Sci., 2018, 444:28-35
    [12]
    LI Z H, CHEN S Y, NAMBIAR S, et al. PMMA/MWCNT nanocomposite for proton radiation shielding applications[J]. Nanotechnology, 2016, 27(23):10
    [13]
    EMILIE J S. Graphene in the sky and beyond[J]. Nat. Nanotechnol., 2014, 9:745-747
    [14]
    TAO Hongren, LIU Siqing, LIN Ruilin, et al. Central radiation model of proton radiation belt[J]. Chin. J. Space Sci., 2015, 35(3):293-305
    [15]
    FANG Haowei. Investigation on Free Radical Evolution and Optical Degeneration of PI under Combined Irradiation[D]. Harbin:Harbin Institute of Technology, 2014
    [16]
    ZHAO Lei. In Partial Fulfillment of the Requirements[D]. Dalian:Dalian Maritime University, 2016
    [17]
    SHEN Zicai. Space Radiation Environment Engineering[M]. Beijing:China Aerospace Publishing House, 2013:120-146
    [18]
    ELISABETH A, TILMAN S, STEFAN K, et al. Electrical behavior of carbon nanotubes under low-energy proton irradiation[J]. J. Nucl. Mater., 2017, 495:299-305
    [19]
    KRASHENINNIKOV A V, NORDLUND K. Ion and electron irradiation-induced effects in nanostructured materials[J]. J. Appl. Phy., 2010, 107(7):1-36
    [20]
    WU X, MU F W, WANG Y H, et al. Application of atomic simulation methods on the study of graphene nanostructure fabrication by particle beam irradiation:a review[J]. Comp. Mater. Sci., 2018, 149:98-106
    [21]
    PENG H B, SUN M L, ZHANG D F, et al. Raman spectroscopy of graphene irradiated with highly charged ions[J]. Surf. Coat. Tech., 2016, 306:171-175
    [22]
    KIRAN J, JINDAL V K, BHARADWAJ L M, et al. Damaged carbon nanotubes get healed by ion irradiation[J]. J. Appl. Phy., 2010, 108:034302
    [23]
    LIU H, YUAN Y P, SHANG Y T, et al. Structural changes and electrical properties of nanowelded multiwalled carbon nanotube junctions[J]. Appl. Opt., 2018, 57:7435-7439
    [24]
    KUMARI R, TYAGI P K, PURI N K, et al. Electron irradiation induced wall-to-wall joining of multiwalled carbon nanotubes[J]. Appl. Surf. Sci., 2018, 453:153-158
    [25]
    KOTAKOSHI J, MEYER J C, KURASCH S, et al. Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation[J]. Phys. Rev., 2011, 83(24):1-6
    [26]
    BANHART F, LI J X, KRASHENINNIKOV A V, et al. Carbon nanotubes under electron irradiation:stability of the tubes and their action as pipes for atom transport[J]. Phys. Rev. B, 2005, 71(24):1-4
    [27]
    CHANG S Q, LI J, HAN W, et al. Fabrication and high radiation-resistant properties of functionalized carbon nanotube reinforced novolac epoxy resin nanocomposite coatings[J]. RSC Adv., 2016, 6(63):58296-58301
    [28]
    RUI E, YANG J Q, LI X J, et al. Change of surface morphology and structure of multi-walled carbon nanotubes film caused by proton irradiation with 170keV[J]. Appl. Surf. Sci., 2013, 287:172-177
    [29]
    ANTONIO V, MACRO V, NICOLETTA D, et al. A conductive surface coating for Si-CNT radiation detectors[J]. Nucl. Instrum. Methods Phys. Res. A, 2015, 790:14-18
    [30]
    ELSEHLY E M, CHECHENIN N G, MAKUNIN A V, et al. Enhancement of CNT-based filters efficiency by ion beam irradiation[J]. Rad. Phys. Chem., 2018, 146:19-25
    [31]
    KYATSANDRA S, WILKINS R. Total ionizing dose X-ray radiation effects on MWCNT/PMMA thin film composites[J]. IEEE Trans. Nanotech., 2015, 14(1):152-158
    [32]
    GIGAX J G, BRADFORD P D, SHAO L. Radiation-induced mechanical property changes of CNT yarn[J]. Nucl. Instrum. Methods Phys. Res. B, 2017, 409:268-271
    [33]
    DENG J H, HOU X G, CHENG L, et al. Irradiation damage determined field emission of ion irradiated carbon nanotubes[J]. Appl. Mater. Inter., 2014, 6:5137-5143
    [34]
    RIUS G, VERDAGUER A, CHAVES F A, et al. Characterization at the nanometer scale of local electron beam irradiation of CNT based devices[J]. Microelec. Eng., 2008, 85:1413-1416
    [35]
    CHEN Y, ZHAO H Y, WU Y Y, et al. Effects of proton irradiation on structures and photo-catalytic property of Nano-TiO2/CNTs films[J]. Rad. Phys. Chem., 2018, 153:79-85
    [36]
    YAN L, ZHOU G Y, ISHAP A, et al. Improving the electrical conductivity of multi-walled carbon nanotube networks by H ion beam irradiation[J]. Carbon, 2011, 49:2141-2161
    [37]
    GU J J, HUANG L R, SHI W Q, et al. Atomic simulations of effect on thermal conductivity of ion-irradiated grapheme[J]. Phys. B:Condens. Mat., 2019, 554:40-44
    [38]
    LI W S, WANG X W, ZHANG X T, et al. Mechanism of the defect formation in supported graphene by energetic heavy ion irradiation:the substrate effect[J]. Sci. Rep., 2015, 5(9935).DOI: 10.1038/srep09935
    [39]
    YANG G, KIN B, KIN K, et al. Energy and dose dependence of proton-irradiation damage in graphene[J]. RSC Adv., 2015, 5:31861-31865
    [40]
    ILYIN A M, GUSEINOV N R, NEMKAEVA R R, et al. Bridge-like radiation defects in few-layer graphene[J]. Nucl. Instrum. Methods Phys. Res. B, 2013, 315:192-196
    [41]
    WU X, ZHAO H Y, YAN D, et al. Doping of graphene using ion beam irradiation and the atomic mechanism[J]. Comp. Mater. Sci., 2017, 129:184-193
    [42]
    ÅHLGREN E H, KOTAKOSKI J, LEHTINEN O, et al. Ion irradiation tolerance of graphene as studied by atomistic simulations[J]. Appl. Phys. Lett., 2012, 100(23):1-4
    [43]
    FISCHBEIN M D, DRNDIC M. Electron beam nanosculpting of suspended graphene sheets[J]. Appl. Phys. Lett., 2008, 93:107-113
    [44]
    KIM K J, CHOI J, LEE H, et al. Effects of 1MeV electron beam irradiation on multilayer graphene grown on 6H-SiC[J]. J. Phys. Chem. C, 2008, 112:13062-13064
    [45]
    WU K H, CHENG H H, MOHAMMAD A A, et al. Electron-beam writing of deoxygenated micro-patterns on graphene oxide film[J]. Carbon, 2015, 95:738-745
    [46]
    FEMI O J D, YAO K, ROCCAPRIORE K, et al. Effects of high-dosage focused electron-beam irradiation at energies ≤ 30keV on graphene on SiO2[J]. Appl. Surf. Sci., 2019, 469:325-330
    [47]
    DUME L F, FENG C F, HE L, et al. Tuning the grade of graphene:gamma ray irradiation of free-standing graphene oxide films in gaseous phase[J]. Appl. Surf. Sci., 2014, 322:126-135
    [48]
    MALINSKY P, GUTRONEO M, MACKOVA A, et al. Graphene oxide layers modified by irradiation with 1.2MeV He+ Ions[J]. Surf. Coat. Tech., 2018, 342:220-225
    [49]
    JWAN K, MIRA P, HYEK S, et al. Easy preparation and characterization of graphene using liquid nitrogen and electron beam irradiation[J]. Mater. Lett., 2015, 149:15-17
    [50]
    OLEJNICZAK A, NEBOGATIKOVA N A, FROLOV A V. Swift heavy-ion irradiation of Graphene Oxide:Localized reduction and formation of sp-hybridized carbon chains[J]. Carbon, 2019, 141:390-399
    [51]
    SLOBODIAN O M, TIAGULSKYI, NIKOLENKO A S, et al. Micro-raman spectroscopy and electrical conductivity of graphene layer on SiO2 dielectric subjected to electron beam irradiation[J]. Mater. Res. Express., 2018, 5:1-11
    [52]
    FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nat. Nanotechnol., 2013, 8(4):235-246
    [53]
    CANCADO L G, JORIO A, MARTINES E H, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J]. Nano. Lett., 2011, 11:3190-3196
    [54]
    COMPAGNINI G, GIANNAZZO F, SONDE S, et al. Ion irradiation and defect formation in single layer grapheme[J]. Carbon, 2009, 47:3201-3207
    [55]
    GUPTA S, HEINTZMAN E, JASINSKI J. Nanocarbon hybrids of graphene-based materials and ultradispersed diamond:investigating structure and hierarchical defects evolution with electron-beam irradiation[J]. J. Raman Spectrosc., 2015, 46:509-523
    [56]
    TEWELDEBRHAN D, BALANDIN A A. Modification of graphene properties due to electron-beam irradiation[J]. Appl. Phys. Lett., 2009, 94(1):1-3
    [57]
    MATHEW S, CHAN T K, ZHAN D, et al. Mega-electron-volt proton irradiation on supported and suspended graphene:a Raman spectroscopic layer dependent study[J]. J. Appl. Phy., 2011, 110(8):1-9
    [58]
    ANASTASI A A, VALSESIB A, COLPO P, et al. Raman spectroscopy of gallium ion irradiated grapheme[J]. Diam. Relat. Mater., 2018, 89:163-173
    [59]
    GU J J, HUANG L, SHI W Q. Atomic simulations of effect on thermal conductivity of ion-irradiated grapheme[J]. Phy. B:Condens. Mat., 2019, 554:40-44
    [60]
    TYAGI C, KHAN S A, OJHA S, et al. Effect of carbon ion-beam irradiation on Graphene Oxide film[J]. Vacuum, 2018, 154:259-263
    [61]
    TYAGI T, LAKSHMI G B V S, KUMAR S, et al. Structural changes in Graphene Oxide thin film by electron-beam irradiation[J]. Nucl. Instrum. Meth. Phys. Res. B, 2016, 379:171-175
    [62]
    CHILDRES I, JAUREGUI L A, FOXE M, et al. Effect of electron-beam irradiation on graphene field effect devices[J]. Appl. Phys. Lett., 2010, 97(17):1-3
    [63]
    LEE S, SEO J, HONG J, et al. Proton irradiation energy dependence of defect formation in grapheme[J]. Appl. Sur. Sci., 2015, 344:52-56
    [64]
    GUO L, CAO S Z, WANG L X. Electron beam irradiation of fluorinated grapheme[J]. Inter. J. Mod. Phys. B, 2017, 3132:5
    [65]
    LIU X, PU J, WANG L, et al. Novel DLC/ionic liquid/graphene nanocomposite coatings towards high-vacuum related space applications[J]. J. Mater. Chem. A, 2013, 1:3797-3809
    [66]
    FAN X Q, WANG L P. Graphene with outstanding anti-irradiation capacity as multialkylated cyclopentanes additive toward space application[J]. Sci. Rep., 2015, 5(1):1-12
    [67]
    JIN Y K, YEONG H G, JIN Y, et al. An effects of proton irradiation on graphene-based supercapacitors[J]. Mater. Res., 2018, 6(1).DOI: 10.1088/2053-1591/aae46e
    [68]
    KUMAR S, KUMAR A, TRIPATHI A, et al. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation[J]. J. Appl. Phys., 2018, 123:161533
    [69]
    LIU P, QI W, AN W Z, et al. The changes of absorption and catalytic capacity on reduced graphene oxide after electron beam irradiation[J]. Nano, 2015, 10:8
    [70]
    KWONA K J, CHOA H Y, NA H G, et al. Improvement of gas sensing behavior in reduced Graphene Oxides by electron-beam irradiation[J]. Sensor. Actuat. B, 2014, 203:143-149
    [71]
    KAUSHIK P D, IVANOV G, LIN P C, et al. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application[J]. Appl. Surf., Sci., 2017, 403:707-716
    [72]
    VOITSIHOVSKA O O, RUDENKO R M, POVARCHUK V Y, et al. The effect of electron irradiation on the electrical properties of reduced graphene oxide paper[J]. Mater. Lett., 2019, 236:334-336
    [73]
    LOEBLEIN M, BOLKER A, TSANG S H, et al. 3D graphene-infused polyimide with enhanced electrothermal performance for long-term flexible space applications[J]. Small, 2015, 11:6425-6434
    [74]
    BHARTI M L, DUTT S, RATURI R, et al. Structural modifications of PMMA and PMMA/CNT matrix by swift heavy ions irradiation[J]. Mater. Sci. Eng., 2017, 225:1-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1746) PDF Downloads(200) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return