Volume 40 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
BU Xuan, LUO Bingxian, LIU Siqing, GONG Jiancun, CAO Yong, WANG Hong. Statistical Study between Characteristic Parameters of Coronal Holes and Intensity/Time of Geomagnetic Storms[J]. Chinese Journal of Space Science, 2020, 40(1): 9-19. doi: 10.11728/cjss2020.01.009
Citation: BU Xuan, LUO Bingxian, LIU Siqing, GONG Jiancun, CAO Yong, WANG Hong. Statistical Study between Characteristic Parameters of Coronal Holes and Intensity/Time of Geomagnetic Storms[J]. Chinese Journal of Space Science, 2020, 40(1): 9-19. doi: 10.11728/cjss2020.01.009

Statistical Study between Characteristic Parameters of Coronal Holes and Intensity/Time of Geomagnetic Storms

doi: 10.11728/cjss2020.01.009 cstr: 32142.14.cjss2020.01.009
  • Received Date: 2019-02-14
  • Rev Recd Date: 2019-07-25
  • Publish Date: 2020-01-15
  • Geomagnetic storm is an important subject in space weather forecasting. High speed solar wind originating from coronal holes passes through the interplanetary space about three days before reaching the Earth. It triggers geomagnetic storms which are dominant during the declining phase and the minimum year of a solar cycle. At present, geomagnetic storms forecasting mostly relies on solar wind parameters at 1AU, and geomagnetic storms are predicted in advance only by about 1 hour. In order to predict geomagnetic storms much earlier, it is necessary to establish the quantitative relationship between the characteristic parameters of coronal holes and geomagnetic storms from the point of the Sun, which is the source of high speed solar wind and geomagnetic storm. In this study, 152 coronal holes and relevant geomagnetic storms events from May 2010 to December 2016 are analyzed. Two characteristic parameters of coronal holes are extracted based on SDO/AIA images, and the geomagnetic index ap, Dst and AE during geomagnetic storms are analyzed. The statistical relationship between characteristic parameters of coronal holes and intensity/time of geomagnetic storms is established, which provides a basis for predicting geomagnetic storms in advance by 1~3 days based on solar EUV images.

     

  • loading
  • [1]
    LUCAS G M, LOVE J J, KELBERT A. Calculation of voltages in electric power transmission lines during historic geomagnetic storms:an investigation using realistic earth impedances[J]. Space Weather, 2018, 16(2):185-195
    [2]
    ASTAFYEVA E, YASYUKEVICH Y, MAKSIKOV A, et al. Geomagnetic storms, super-storms and their impacts on GPS-based navigation systems[J]. Space Weather, 2014, 12(7):508-525
    [3]
    ROSTOKER G. Geomagnetic indices[J]. Rev. Geophys. Space Phys., 1972, 10(4).DOI: 10.1029/RG010i004p00935
    [4]
    MENVIELLE M, BERTHELIER A. The K-Derived planetary indexes-description and availability[J]. Rev. Geophys., 1991, 29(3):415-432
    [5]
    DAVIS T N, SUGIURA M. Auroral eletrojet activity index AE and its universal time variations[J]. J. Geophys. Res., 1966, 71:785-803
    [6]
    BOBERG F, WINTOFT P, LUNDSTEDT H. Real time Kp predictions from solar wind data using neural networks[J]. Phys. Chem. Earth:Sol. Terr. Planet. Sci., 2000, 25(4):275-280
    [7]
    JOHNSON J R, WING S. A solar cycle dependence of nonlinearity in magnetospheric activity[J]. J. Geophys. Res.:Space Phys., 2005, 110(A4).DOI: 10.1029/2004JA010638
    [8]
    BALA R, REIFF P. Improvements in short-term forecasting of geomagnetic activity[J]. Space Weather:Int. J. Res. Appl., 2012, 10(6).DOI: 10.1029/2012SW000779
    [9]
    LUO B, LIU S, GONG J. Two empirical models for short-term forecast of Kp[J]. Space Weather, 2017, 15(3):503-516
    [10]
    SHARIFIE J, LUCAS C, ARAABI B N. Locally linear neurofuzzy modeling and prediction of geomagnetic disturbances based on solar wind conditions[J]. Space Weather:Int. J. Res. Appl., 2006, 4(6).DOI: 10.1029/2005SW000209
    [11]
    AMATA E, PALLOCCHIA G, CONSOLINI G, et al. Comparison between three algorithms for Dst predictions over the 2003-2005 period[J]. J. Atmos. Sol.:Terr. Phys., 2008, 70(2-4):496-502
    [12]
    BOYNTON R J, BALIKBIN M A, BILLINGS S A, et al. Data derived NARMAX Dst model[J]. Ann. Geophys., 2011, 29(6):965-971
    [13]
    BOYNTON R J, BALIKBIN M A, BILLINGS S A, et al. Application of nonlinear autoregressive moving average exogenous input models to geospace:advances in understanding and space weather forecasts[J]. Ann. Geophys., 2013, 31(9):1579-1589
    [14]
    CASWELL J M. A nonlinear autoregressive approach to statistical prediction of disturbance storm time geomagnetic fluctuations using solar data[J]. J. Signal Inf. Process., 2014, 5(2):42-53
    [15]
    REVALLO M, VALACH F, HEJDA P, et al. A neural network Dst index model driven by input time histories of the solar wind-magnetosphere interaction[J]. J. Atmos. Sol.:Terr. Phys., 2014, 110:9-14
    [16]
    07[J]. J. Atmos. Sol.:Terr. Phys., 2015, 125:10-20
    [17]
    TEMERIN M, LI X. A new model for the prediction of Dst on the basis of the solar wind[J]. Geophys. Res., 2002, 107(A12).DOI: 10.1029/2001JA007532
    [18]
    TEMERIN M, LI X. Dst model for 1995-2002[J]. Geophys. Res., 2006, 111(A4).DOI: 10.1029/2005JA011257
    [19]
    GLEISNER H, LUNDSTEDT H. Response of the auroral electrojets to the solar wind modeled with neural networks[J]. J. Geophys. Res.:Space Phys., 1997, 102(A7):14269-14278
    [20]
    GAVRISHCHAKA V V, GANGULI S B. Optimization of the neural-network geomagnetic model for forecasting large-amplitude substorm events[J]. J. Geophys. Res.:Space Phys., 2001, 106(A4):6247-6257
    [21]
    WEIGEL R S, KLIMAS A J, VASSILIADIS D. Solar wind coupling to and predictability of ground magnetic fields and their time derivatives[J]. J. Geophys. Res.:Space Phys., 2003, 108(A7).DOI: 10.1029/2002ja009627
    [22]
    CHEN J, SHARMA A S. Modeling and prediction of the magnetospheric dynamics during intense geospace storms[J]. J. Geophys. Res:Space Phys., 2006, 111(A4). DOI: 10.1029/2005JA011359
    [23]
    LI X L, OH K S, TEMERIN M. Prediction of the AL index using solar wind parameters[J]. J. Geophys. Res.:Space Phys., 2007, 112(A6).DOI: 10.1029/2006JA011918
    [24]
    LUO B X, LI X L, TEMERIN M, et al. Prediction of the AU, AL, and AE indices using solar wind parameters[J]. J. Geophys. Res.:Space Phys., 2013, 118(12):7683-7694
    [25]
    AKASOFU S I, WATANABE H, SAITO T. A new morphology of solar activity and recurrent geomagnetic disturbances:the late-declining phase of the sunspot cycle[J]. Space Sci. Rev., 2005, 120(1/2):27-65
    [26]
    TSURUTANI B T, GONZALEZ W D, GONZALEZ A L C, et al. Corotating solar wind streams and recurrent geomagnetic activity:a review[J]. J. Geophys. Res., 2006, 111(A7).DOI: 10.1029/2005ja011273
    [27]
    GOSLING J T, ASBRIDGE J R, BAME S J, et al. Solar wind stream interfaces[J]. J. Geophys. Res., 1978, 83(A4).DOI: 10.1029/JA083iA04p01401
    [28]
    BURLAGA L F. Interplanetary streams and their interaction with the Earth[J]. Space Sci. Rev., 1975, 17(2-4):327-352
    [29]
    VRŠNAK B, TEMMER M, VERONIG A M. Coronal holes and solar wind high-speed streams:II. Forecasting the geomagnetic effects[J]. Sol. Phys., 2007, 240(2):331-346
    [30]
    VERBANAC G, VRŠNAK B, VERONIG A, et al. Equatorial coronal holes, Solar Wind high-speed streams, and their geoeffectiveness[J]. Astron. Astrophys., 2011, 526(A20).DOI: 10.1051/0004-6361/201014617
    [31]
    LEMEN J R, TITLE A M, AKIN D J, et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO)[J]. Sol. Phys., 2011, 275(1/2):17-40
    [32]
    STONE E C, FRANDSEN A M, MEWALDT R A, et al. The advanced composition explorer[J]. Space Sci. Rev., 1998, 86(1/2/3/4):1-22
    [33]
    ROTTER T, VERONIG A M, TEMMER M, et al. Relation between coronal hole areas on the Sun and the Solar Wind Parameters at 1AU[J]. Sol. Phys., 2012, 281(2):793-813
    [34]
    LUO B, ZHONG Q, LIU S, et al. A new forecasting index for solar wind velocity based on EIT 284Å observations[J]. Sol. Phys., 2008, 250(1):159-170
    [35]
    GUPTA V, BADRUDDIN. High-speed Solar Wind Streams during 1996-2007:sources, statistical distribution and plasma/field properties[J]. Sol. Phys., 2010, 264(1):165-188
    [36]
    GOSLING J T. Corotating and transient solar wind flows in three dimensions[J]. Ann. Rev. Astron. Astrophys., 1996, 34:35-73
    [37]
    MAVROMICHALAKI H, VASSILAKI A. Fast plasma streams recorded near the earth during 1985-1996[J]. Sol. Phys., 1998, 183(1):181-200
    [38]
    ECHER E, GONZALEZ W D, ALVES M V. On the geomagnetic effects of solar wind interplanetary magnetic structures[J]. Space Weather, 2006, 4(6).DOI:10. 1029/2005SW000200
    [39]
    RICHARDSON I G. The formation of CIRs at stream-stream interfaces and resultant geomagnetic activity[J]. Geophys. M. Ser., 2006, 167:45-58
    [40]
    ZHANG Y, SUN W, FENG X S, et al. Statistical analysis of corotating interaction regions and their geoeffectiveness during solar cycle 23[J]. J. Geophys. Res., 2008, 113:1-13
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1522) PDF Downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return