Volume 40 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
YE Jiancheng, ZHOU Bin, ZHANG Yiteng, SUN Zheng. Active Compensation Method of Spacecraft Internal Magnetic Field Environment[J]. Chinese Journal of Space Science, 2020, 40(1): 93-101. doi: 10.11728/cjss2020.01.093
Citation: YE Jiancheng, ZHOU Bin, ZHANG Yiteng, SUN Zheng. Active Compensation Method of Spacecraft Internal Magnetic Field Environment[J]. Chinese Journal of Space Science, 2020, 40(1): 93-101. doi: 10.11728/cjss2020.01.093

Active Compensation Method of Spacecraft Internal Magnetic Field Environment

doi: 10.11728/cjss2020.01.093 cstr: 32142.14.cjss2020.01.093
  • Received Date: 2019-03-14
  • Rev Recd Date: 2019-06-14
  • Publish Date: 2020-01-15
  • In order to solve the problem that spacecraft magnetic field interferes with inertial sensor in the mission of gravitational wave detection. A method of acquiring small-scale uniform magnetic field environment by measurement and active compensation in spacecraft complex magnetic environment is introduced. Magnetic source around inertial sensor and the magnetic field as well as its gradient distribution near inertial sensor can be obtained by distributed magnetic field detecting combined with spherical harmonic function and multi-magnetic dipole method. By properly setting coils, the linear compensation of magnetic field and the first order tensor can be realized. The influences of sensor number, magnetic source layout and other factors on the final compensation effect are discussed. Simulation results show that this method can reduce the magnetic field and its gradient near inertial sensor by 1~2 orders of magnitude, which can reduce residual magnetic control pressure of gravitational wave spacecraft platform and provide a magnetic field environment satisfying the requirements of gravitational wave detection.

     

  • loading
  • [1]
    AASI J, ABBOTT B P, ABBOTT R, et al. Advanced LIGO[J]. Classical Quant. Grav., 2015, 32(7):1-41
    [2]
    LUO Ziren, BAI Shan, BIAN Xing, et al. Gravitational wave detection by space laser interferometry[J]. Adv. Mech., 2013, 43(4):415-447(罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展, 2013, 43(4):415-447)
    [3]
    NORMAN F N, KENNETH W B, RONALD P L, et al. Use of two magnetometers for magnetic field measurements[J]. J. Geophys. Res., 1971, 76(16):3565-3573
    [4]
    ZHOU Bin, WANG Jindong. Influence of magnetic component distribution of satellite on eliminating remanent magnetic field by gradient method[J]. Chin. Space Sci. Technol., 2013, 5(10):29-34(周斌, 王劲东. 卫星磁部件分布对梯度消除剩磁的影响分析[J]. 中国空间科学技术, 2013, 5(10):29-34)
    [5]
    JACOBSEN K S, WAHLUND J E, PEDERSEN A. Cassini Langmuir probe measurements in the inner magnetosphere of Saturn[J]. Planet. Space Sci., 2009, 57(1):48-52
    [6]
    ANDREAS B, ROLAND S. Frequency shifts in a cesium atomic clock due to Majorana transitions[J]. Ann. Phys., 1993, 505(5):421-449
    [7]
    NARVAEZ P. The Magnetostatic cleanliness program for the Cassini spacecraft[J]. Space Sci. Rev., 2004, 114:385-394
    [8]
    BALOGH A, DUNLOP M W, COWLEY W H, et al. The Cluster magnetic field investigation[J]. Space Sci. Rev., 1997, 79(2):65-91
    [9]
    LUDLAM M, ANGELOPOULOS V, et al. The THEMIS magnetic cleanliness program[J]. Space Sci. Rev., 2008, 141:171-184
    [10]
    CHEN Siwen, HUANG Yuangao, LI Wenzeng. Magnetic measurement of Double Star Instrument and magnetic measuring equipment[J]. Prog. Geophys., 2004, 19(4):893-897(陈斯文, 黄源高, 李文曾. 双星星上部件磁测及磁测设备[J]. 地球物理学进展, 2004, 19(4):893-897)
    [11]
    XIAO Qi, GENG Xiaolei, CHEN Jingang, et al. Calibration methods of the interference magnetic field for low Earth Orbit (LEO) magnetic satellite[J]. Chin. J. Geophys., 2018, 61(8):3134-3138(肖琦, 耿晓磊, 陈金刚, 等. 低轨道磁测卫星干扰磁场标定方法研究[J]. 地球物理学报, 2018, 61(8):3134-3138)
    [12]
    LIU Liang, LÜ Desheng, CHEN Weibao, et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms[J]. Nat. Commun., 2018, 9(1):2760-2767
    [13]
    WU Changjiang, GUAN Yong, CHEN Jiang, et al. A realization of uniform C field caesium atomic fountain clock[J]. J. Time Freq., 2011, 34(2):81-86(吴长江, 管勇, 陈江, 等. 铯原子喷泉钟均匀C场的实现[J]. 时间频率学报, 2011, 34(2):81-86)
    [14]
    MARC D A. ALBERTO L, ENRIQUE G B. Neural network interpolation of the magnetic field for the magnetic field for the LISA Pathfinder diagnostics subsystem[J]. Exp. Astron, 2011, 30(1):1-21
    [15]
    XU Wenyao. Physics of Electromagnetic Phenomena of the Earth[M]. Hefei:Press of University of Science and Technology of China, 2009(徐文耀. 地球电磁现象物理学[M]. 合肥:中国科学技术大学出版社, 2009)
    [16]
    LIU Chaobo, WANG Bin. Measurement and calculation of magnetic field full tensor with error analysis[J]. Spacecraft Environ. Eng., 2015, 32:63-66(刘超波, 王斌. 磁场全张量测量计算方法与误差分析[J]. 航天器环境工程, 2015, 32:63-66)
    [17]
    MARC D A, IGNACIO M, JUAN R C, et al. Design of the magnetic diagnostics unit onboard LISA Pathfinder[J]. Aerosp. Sci. Technol., 2018, 30:1-21
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1160) PDF Downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return