Volume 40 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
JING Wenqi, CUI Yuanyuan, WANG Yegui, JIANG Huiming, CAI Qifa, LAN Weiren. Assimilation of Near Space Temperature Data from SABER and MLS Observations into the Whole Atmosphere Community Climate Model and Data Assimilation Research Test-bed[J]. Chinese Journal of Space Science, 2020, 40(2): 227-241. doi: 10.11728/cjss2020.02.227
Citation: JING Wenqi, CUI Yuanyuan, WANG Yegui, JIANG Huiming, CAI Qifa, LAN Weiren. Assimilation of Near Space Temperature Data from SABER and MLS Observations into the Whole Atmosphere Community Climate Model and Data Assimilation Research Test-bed[J]. Chinese Journal of Space Science, 2020, 40(2): 227-241. doi: 10.11728/cjss2020.02.227

Assimilation of Near Space Temperature Data from SABER and MLS Observations into the Whole Atmosphere Community Climate Model and Data Assimilation Research Test-bed

doi: 10.11728/cjss2020.02.227 cstr: 32142.14.cjss2020.02.227
  • Received Date: 2018-12-17
  • Rev Recd Date: 2019-12-21
  • Publish Date: 2020-03-15
  • This study performs SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and MLS (Microwave Limb Sounder) temperature data assimilation experiments to simulate a SSW (Stratospheric Sudden Warming) process occurred in February 2016, based on WACCM+DART (Whole Atmosphere Community Climate Model, Data Assimilation Research Test-bed). The following main conclusions are obtained. First, assimilating SABER and MLS temperature observations significantly reduces WACCM's forecast error of temperature fields in mesosphere and middle-upper stratosphere (0.001~10hPa), and effectively improves control experiment's several discrepancies with observations and reanalysis, such as colder mesosphere during SSW, lower layer height that zonal wind direction firstly changes when SSW occurs, east zonal wind layers in 0.1~10hPa prematurely vanishing, stronger zonal wind and higher stratopause height during SSW recovery phase. The verification based on ERA5 reanalysis suggests that assimilating SABER and MLS temperature observations is in favor of reducing analysis error of zonal wind in low mesosphere and middle-upper stratosphere (0.1~14hPa) and temperature in stratosphere and middle-lower mesosphere (0.01~100hPa) above high-latitude areas (60°-90°N)in the northern hemisphere. In addition, assimilating low atmospheric observations is also beneficial for reducing analysis error of zonal wind in 0.1~14hPa and temperature in 0.01~100hPa, but this reduction effect is not as significant as that of assimilating SABER and MLS temperature observations.

     

  • loading
  • [1]
    LÜ Daren, CHEN Zeyu, GUO Xia, et al. Recent progress in near space atmospheric environment study[J]. Adv. Mech., 2009, 39(6):674-682(吕达仁, 陈泽宇, 郭霞, 等. 临近空间大气环境研究现状[J]. 力学进展, 2009, 39(6):674-682)
    [2]
    XIAO Cunying. Researches on the Dynamics of the Atmosphere in the Near Space[D]. Beijing:Center for Space Science and Applied Research, Chinese Academy of Sciences, 2009(肖存英. 临近空间大气动力学特性研究[D]. 北京:中国科学院空间科学与应用研究中心, 2009)
    [3]
    CHEN Fenggui, CHEN Guangming, LIU Kehua. Analysis of near apace environment and its effect[J]. Equip. Environ. Eng., 2013, 10(4):71-75(陈凤贵, 陈光明, 刘克华. 临近空间环境及其影响分析[J]. 装备环境工程, 2013, 10(4):71-75)
    [4]
    ZHANG J, TIAN W, CHIPPERFIELD M P, et al. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades[J]. Nat. Clim. Change, 2016, 6(12):1094-1099
    [5]
    TIAN Wenshou, TIAN Hongying, SHANG Lin, et al. Advances in interactions between tropical stratosphere and troposphere[J]. J. Trop. Meteor., 2011, 27(5):765-774(田文寿, 田红瑛, 商林, 等. 热带平流层与对流层之间相互作用的研究进展[J]. 热带气象学报, 2011, 27(5):765-774)
    [6]
    GERBER E P, BALDWIN M P, AKIYOSHI H, et al. Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models[J]. J. Geophys. Res.:Atmos., 2010, 115(D3).DOI: 10.1029/2009JD013770
    [7]
    XIE F, TIAN W, CHIPPERFIELD M P. Radiative effect of ozone change on stratosphere-troposphere exchange[J]. J. Geophys. Res.:Atmos., 2008, 113(D7).DOI: 10.1029/2008JD009829
    [8]
    XIE F, LI J, TIAN W, et al. A connection from Arctic stratospheric ozone to El Niño-Southern Oscillation[J]. Environ. Res. Lett., 2016, 11(12):124026
    [9]
    LIU H L, MCINERNEY J M, SANTOS S, et al. Gravity waves simulated by high-resolution Whole Atmosphere Community Climate Model[J]. Geophys. Res. Lett., 2014, 41(24):9106-9112
    [10]
    HERSBACH H, DEE D. ERA5 reanalysis in production[J]. ECMWF Newsletter, 2016, 7:147
    [11]
    JIN H, MIYOSHI Y, PANCHEVA D, et al. Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations[J]. J. Geophys. Res.:Space Phys., 2012, 117(A10). DOI: 10.1029/2012JA017650
    [12]
    SCHMIDT H, BRASSEUR G P, CHARRON M, et al. The HAMMONIA chemistry climate model:sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling[J]. J. Clim., 2006, 19(16):3903-3931
    [13]
    AKMAEV R A, FULLER-ROWELL T J, WU F, et al. Tidal variability in the lower thermosphere:comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED[J]. Geophys. Res. Lett., 2008, 35(3).DOI: 10.1029/2007GL032584
    [14]
    GARCIA R R, MARSH D R, KINNISON D E, et al. Simulation of secular trends in the middle atmosphere, 1950-2003[J]. J. Geophys. Res.:Atmos., 2007, 112(D9).DOI: 10.1029/2006JD007485
    [15]
    RICHTER J H, SASSI F, GARCIA R R. Toward a physically based gravity wave source parameterization in a general circulation model[J]. J. Geophys. Res.:Atmos, 2010, 67(1):136-156
    [16]
    ECKERMANN S D, MCCORMACK J P, COY L, et al. NOGAPS-ALPHA:a prototype high-altitude global NWP model[R]. Washington DC:Naval Research Lab, 2004
    [17]
    HU Xiong, GONG Jiancun, YANG Junfeng, et al. A study of near-space atmospheric prediction methods[R]//Proceedings of the 3rd China High Resolution Earth Observation. Beijing, 2014
    [18]
    XIAO Cunying, HU Xiong, YANG Junfeng, et al. Near-space Aura/MLS Satellite Data Assimilation Technology and its Application in Numerical Forecast[C]//Proceedings of the 4th China High Resolution Earth Observation. Wuhan:Wuhan University, 2017
    [19]
    XU J, LIU H L, YUAN W, et al. Mesopause structure from Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations[J]. J. Geophys. Res.:Atmos., 2007, 112(D9).DOI: 10.1029/2006JD007711
    [20]
    LIVESEY N J. Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) Version 4.2 x Level 2 Data Quality and Description Document, 91109-8099, Version 4.2 x[R]. Pasadena:Jet Propulsion Lab, 2015
    [21]
    FISCHER H, BIRK M, BLOM C, et al. MIPAS:an instrument for atmospheric and climate research[J]. Atmos. Chem. Phys., 2008, 8(8):2151-2188
    [22]
    TANG Lei, JIANG Shan, LI Zimu, et al. Performance improvement of Rayleigh wind lidar and wind field observation in middle and upper atmosphere[J]. Chin. J. Lasers, 2016, 43(7):263-272(唐磊, 蒋杉, 李梓霂, 等. 瑞利测风激光雷达系统性能改进与中高层大气风场观测[J]. 中国激光, 2016, 43(7):263-272)
    [23]
    YUAN Wei, XU JiYao, MA RuiPing, et al. First observation of mesospheric winds by a Fabry-Perot interferometer in China[J]. Chin. Sci. Bull., 2010, 55(35):3378-3383(袁韡, 徐寄遥, 马瑞平, 等. 我国光学干涉仪对中高层大气风场的首次观测[J]. 科学通报, 2010, 55(35):3378-3383)
    [24]
    LU D, PAN W, WANG Y. Atmospheric profiling synthetic observation system in Tibet[J]. Adv. Atmos. Sci., 2018, 1531(3):244-247
    [25]
    ANDERSON J, HOAR T, RAEDER K, et al. The data assimilation research test bed:a community facility[J]. Bull. Am. Meteor. Soc., 2009, 90(9):1283-1296
    [26]
    XU X, MANSON A H, MEEK C E, et al. Mesospheric wind semidiurnal tides within the Canadian middle atmosphere model data assimilation system[J]. J. Geophys. Res.:Atmos., 2011, 116(D17).DOI: 10.1029/2011JD015966
    [27]
    PEDATELLA N M, RAEDER K, ANDERSON J L, et al. Application of data assimilation in the Whole Atmosphere Community Climate Model to the study of day-to-day variability in the middle and upper atmosphere[J]. Geophys. Res. Lett., 2013, 40(16):4469-4474
    [28]
    PEDATELLA N M, RAEDER K, ANDERSON J L, et al. Ensemble data assimilation in the whole atmosphere community climate model[J]. J. Geophys. Res., 2014, 119(16):9793-9809
    [29]
    ALLEN D R, COY L, ECKERMANN S D, et al. NOGAPS-ALPHA simulations of the 2002 Southern Hemisphere stratospheric major warming[J]. Mon. Weather Rev., 2006, 134(2):498-518
    [30]
    ECKERMANN S D, HOPPEL K W, COY L, et al. High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007[J]. J. Atmos. Sol.:Terr. Phys., 2009, 71(3):531-551
    [31]
    KIESEWETTER G, SINNHUBER B M, VOUNTAS M, et al. A long-term stratospheric ozone data set from assimilation of satellite observations:high-latitude ozone anomalies[J]. J. Geophys. Res.:Atmos., 2010, 115(D10). DOI: 10.1029/2009JD013362
    [32]
    INNESS A, BLECHSCHMIDT A M, BOUARAR I, et al. Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF's Composition-IFS[J]. Atmos. Chem. Phys., 2015, 15(9):5275-5303
    [33]
    SWADLEY S D, POE G A, BELL W, et al. Analysis and characterization of the SSMIS upper atmosphere sounding channel measurements[J]. IEEE Trans. Geosci. Electron., 2008, 46(4):962-983
    [34]
    HOPPEL K W, ECKERMANN S D, COY L, et al. Evaluation of SSMIS upper atmosphere sounding channels for high-altitude data assimilation[J]. Mon. Weather Rev., 2013, 141(10):3314-3330
    [35]
    DONG Yaning. Study on the Global Ozone Satellite Data Assimilation Experiment Based on Ensemble Kalman Filter[D]. Nanjing:Nanjing University of Information Science and Technology, 2016(董亚宁. 基于集合卡尔曼滤波全球臭氧卫星观测资料同化试验研究[D]. 南京:南京信息工程大学, 2016)
    [36]
    XIE Yanxin, WU Xiaocheng, HU Xiong, et al. Preliminary study on 3-dimensional variational assimilation of global temperature field in near space[J]. Infrared Laser Eng., 2017, 46(8):47-52(谢衍新, 吴小成, 胡雄, 等. 临近空间全球温度场三维变分同化[J]. 红外与激光工程, 2017, 46(8):47-52)
    [37]
    JING Wenqi, WANG Yegui, CUI Yuanyuan, et al. Assimilation of near space ozone data from SABER and MLS observations into the whole atmosphere community climate model and data assimilation research test-bed[J]. Chin. J. Atmos. Sci., 2019, 43(2):233-250(敬文琪, 王业桂, 崔园园, 等. 基于WACCM+DART的临近空间SABER和MLS臭氧观测同化试验研究[J]. 大气科学, 2019, 43(2):233-250)
    [38]
    REMSBERG E E, MARSHALL B T, GARCIA-COMAS M, et al. Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER[J]. J. Geophys. Res.:Atmos., 2008, 113(D17).DOI: 10.1029/2008JD010013
    [39]
    LIN S J. A “vertically Lagrangian” finite-volume dynamical core for global models[J]. Mon. Weather Rev., 2004, 132(10):2293-2307
    [40]
    MARSH D R, GARCIA R R, KINNISON D E, et al. Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing[J]. J. Geophys. Res.:Atmos., 2007, 112(D23).DOI: 10.1029/2006JD008306
    [41]
    MARSH D R, MILLS M J, KINNISON D E, et al. Climate change from 1850 to 2005 simulated in CESM1(WACCM)[J]. J. Clim., 2013, 26(19):7372-7391
    [42]
    KINNISON D E, BRASSEUR G P, WALTERS S, et al. Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model[J]. J. Geophys. Res.:Atmos., 2007, 112(D20).DOI: 10.1029/2006JD007879
    [43]
    ANDERSON J L. An ensemble adjustment Kalman filter for data assimilation[J]. Mon. Weather Rev., 2001, 129(12):2884-2903
    [44]
    ANDERSON J L. A non-Gaussian ensemble filter update for data assimilation[J]. Mon. Weather Rev., 2010, 138(11):4186-4198
    [45]
    ANDERSON J L. Spatially and temporally varying adaptive covariance inflation for ensemble filters[J]. Tellus A, 2009, 61(1):72-83
    [46]
    ANDERSON J L.Localization and sampling error correction in ensemble Kalman filter data assimilation[J]. Mon. Weather Rev., 2012, 140(7):2359-2371
    [47]
    WANG Y, JING W, CUI Y, et al. Application of ERA5 reanalysis to the construction of initial conditions for WACCM simulations[J]. Chin. J. Space Sci., 2018, 38(4):460-468
    [48]
    HOFFMAN R N, KALNAY E. Lagged average forecasting, an alternative to Monte Carlo forecasting[J]. Tellus A, 1983, 35(2):100-118
    [49]
    JAPAN METEOROLOGICAL AGENCY. Annual Report on the Climate System 2016[R]. Tokyo:Japan Meteorological Agency, 2017
    [50]
    COY L, ECKERMANN S D, HOPPEL K W, et al. Mesospheric precursors to the major stratospheric sudden warming of 2009:validation and dynamical attribution using a ground-to-edge-of-space data assimilation system[J]. J. Adv. Model. Earth Syst., 2011, 3(4).DOI: 10.1029/2011MS000067
    [51]
    REN S, POLAVARAPU S, BEAGLEY S R, et al. The impact of gravity wave drag on mesospheric analyses of the 2006 stratospheric major warming[J]. J. Geophys. Res.:Atmos., 2011, 116(D19).DOI: 10.1029/2011JD015943
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1548) PDF Downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return