Volume 40 Issue 2
Mar.  2020
Turn off MathJax
Article Contents
YAO Xiang, CHEN Mingjian, WANG Jianguang, CHEN Rui. Adaptability Analysis of GPT2w Model in High Latitudes[J]. Chinese Journal of Space Science, 2020, 40(2): 242-249. doi: 10.11728/cjss2020.02.242
Citation: YAO Xiang, CHEN Mingjian, WANG Jianguang, CHEN Rui. Adaptability Analysis of GPT2w Model in High Latitudes[J]. Chinese Journal of Space Science, 2020, 40(2): 242-249. doi: 10.11728/cjss2020.02.242

Adaptability Analysis of GPT2w Model in High Latitudes

doi: 10.11728/cjss2020.02.242 cstr: 32142.14.cjss2020.02.242
  • Received Date: 2018-12-07
  • Rev Recd Date: 2019-07-23
  • Publish Date: 2020-03-15
  • The GPT2w model is the most accurate zenith tropospheric model in current, but there exists large error at high latitudes. In order to better ensure the high-precision application of satellite navigation and positioning system in high latitudes, the accuracy of GPT2w model in high latitudes is evaluated, and GPT2w model is used to obtain zenith tropospheric wet delay, dry delay and total delay, and the impact of GPT2w model correction on precise point positioning is explored. The test results show that the accuracy of GPT2w model in high latitudes is in the centimeter level, which is better than that in the middle and low latitudes. The zenith tropospheric delay in the Antarctic and Arctic regions has obvious seasonal variation characteristics and regional consistency characteristics. The total tropospheric delay in summer is higher than that in winter. The tropospheric delay in the Arctic region is significantly higher than that in the Antarctic region, and the zenith tropospheric delay in the Arctic region varies with the seasons more than the Antarctic region. The PPP test results show that the GPT2w model can effectively improve the positioning accuracy and adapt to high-precision positioning in high latitudes.

     

  • loading
  • [1]
    LI Zhenhang, ZHANG Xiaohong. New Techniques and Precise Data Processing Methods of Satellite Navigation and Positioning[M]. Wuhan:Wuhan University Press, 2009(李征航, 张小红. 卫星导航定位新技术及高精度数据处理方法[M]. 武汉:武汉大学出版社, 2009)
    [2]
    LI Wei, YUAN Yunbin, OU Jikun, et al. A new global zenith tropospheric delay model IGGtrop for GNSS applications[J]. Chin. Sci. Bull., 2012, 57(17):2132-2139
    [3]
    LI Wei, YUAN Yunbin, OU Jikun, et al. New versions of the BDS/GNSS zenith tropospheric delay model IGGtrop[J]. J. Geodesy, 2015, 89(1):73-80
    [4]
    LI Wei,YUAN Yunbin, OU Jikun, et al. IGGtrop_SH and IGGtrop_rH:two improved empirical tropospheric delay models based on vertical reduction functions[J]. IEEE Trans. Geosci. Remote Sens., 2018, 56(9):1-13
    [5]
    YAO Yibin, ZHANG Bao, YAN Feng, et al. Two new sophisticated models for tropospheric delay corrections[J]. Chin. J. Geophys., 2015, 58(5):1492-1501(姚宜斌, 张豹, 严凤, 等. 两种精化的对流层延迟改正模型[J]. 地球物理学报, 2015, 58(5):1492-1501)
    [6]
    LEANDRO R F, SANTOS M C, LANGLEY R B. UNB neutral atmosphere models:development and performance. Proceedings of ION NTM 2006[C]//The 2006 National Technical Meeting. Monterey:the Institute of Navigation, 2006:564-573
    [7]
    LEANDRO R F, LANGLEY R B, SANTOS M C. UNB3m_pack:a neutral atmosphere delay package for radiometric space techniques[J]. GPS Solut., 2008, 12(1):65-70
    [8]
    PENNA N, DODSON A, CHEN W. Assessment of EGNOS tropospheric correction model[J]. J. Navig., 2001, 54(1):37-55
    [9]
    KOUBA J. Testing of Global Pressure/Temperature (GPT) model and Global Mapping Function (GMF) in GPS analyses[J]. J. Geodesy, 2009, 83(3/4):199-208
    [10]
    LAGLER K, SCHINDELEGGER M, BÖHM J, et al. GPT2:empirical slant delay model for radio space geodetic techniques[J]. Geophys. Res. Lett., 2013, 40(6):1069-1073
    [11]
    ZHANG H, LI Wei, YUAN Yunbin, et al. Assessment of three tropospheric delay models (IGGtrop, EGNOS and UNB3m) based on precise point positioning in the Chinese region[J]. Sensors, 2016, 16(1):122
    [12]
    YAO Yibin, HE Changyong, ZHANG Bao, et al. A new global zenith tropospheric model GZTD[J]. Chin. J. Geophys., 2013, 56(7):2218-2227(姚宜斌, 何畅勇, 张豹, 等. 一种新的全球对流层天顶延迟模型GZTD[J]. 地球物理学报, 2013, 56(7):2218-2227)
    [13]
    CHEN W, GAO C, PAN S. Assessment of GPT2 empirical troposphere model and application analysis in precise point positioning[J]. Lect. Notes Elect. Eng., 2014, 304(2):451-463
    [14]
    YAO Yibin, CAO Na, XU Chaoling, et al. Accuracy assessment and analysis for GPT2[J]. Acta Geodaet. Cartograph. Sin., 2015, 44(7):726-733(姚宜斌, 曹娜, 许超钤, 等. GPT2模型的精度检验与分析[J]. 测绘学报, 2015, 44(7):726-733)
    [15]
    JOHANNES Böhm, GREGOR Möller, SCHINDELEGGER M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solut., 2015, 19(3):433-441
    [16]
    HUA Zhonghao, LIU Lintao, LIANG Xinghui. An assessment of GPT2w model and fusion of a troposphere model with in situ data[J]. Geomat. Inf. Sci. Wuhan Univ, 2017, 42(10):1468-1473(滑中豪, 柳林涛, 梁星辉. GPT2w模型检验以及对流层模型的参数互融[J]. 武汉大学学报:信息科学版, 2017, 42(10):1468-1473)
    [17]
    KONG Jian, YAO Yibin, WANG Zeming, et al. The accuracy analysis of GPT2w at antarctic area[J]. Acta Geodaet. Cartograph. Sin., 2018, 10:1001-1595(孔健, 姚宜斌, 王泽民, 等. GPT2w模型在南极地区精度分析[J]. 测绘学报, 2018, 10:1001-1595)
    [18]
    SAASTAMOINEN J H. Atmospheric correction for the troposphere and the stratosphere in radio ranging satellites[J]. Use Artif. Satell. Geod., 1972, 15(6):247-251
    [19]
    ASKNE J, NORDIUS H. Estimation of tropospheric delay for microwaves from surface weather data[J]. Radio Sci., 2016, 22(3):379-386
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1630) PDF Downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return