Volume 40 Issue 3
May  2020
Turn off MathJax
Article Contents
DENG Kun, MA Yonghui, LIU Minbo, GUO Zhixiong, WANG Shu. Observations of TEC Depletion, Periodic Structure of TEC, ROTI and Scintillation Associated with ESF Irregularities over South China[J]. Chinese Journal of Space Science, 2020, 40(3): 331-340. doi: 10.11728/cjss2020.03.331
Citation: DENG Kun, MA Yonghui, LIU Minbo, GUO Zhixiong, WANG Shu. Observations of TEC Depletion, Periodic Structure of TEC, ROTI and Scintillation Associated with ESF Irregularities over South China[J]. Chinese Journal of Space Science, 2020, 40(3): 331-340. doi: 10.11728/cjss2020.03.331

Observations of TEC Depletion, Periodic Structure of TEC, ROTI and Scintillation Associated with ESF Irregularities over South China

doi: 10.11728/cjss2020.03.331 cstr: 32142.14.cjss2020.03.331
Funds:

Supported by the National Natural Science Young Foundation of China (41704168)

More Information
  • Author Bio:

    DENG Kun,E-mail:yuyuida@foxmail.com

  • Received Date: 2019-08-29
  • Rev Recd Date: 2020-04-06
  • Publish Date: 2020-05-15
  • The observations of Global Positioning System (GPS) scintillation, Total Electron Content (TEC) depletion, the periodic structure of TEC and Rate of TEC Index (ROTI) over south China were presented. Data were collected from GPS observations at stations of Shenzhen and Guangzhou from 2011 to 2012. This study reported that the ratio of simultaneous occurrences of TEC depletions with strong scintillations was higher than that of TEC depletions with weak scintillations in vernal and autumnal equinoxes of 2011 over South China. The number of the periodic structures of TEC with depletion contained was greater than that with no depletion contained corresponding to strong scintillations. The structure of the slab of plasma irregularities could be responsible for the simultaneous occurrences of TEC depletion with strong scintillations and ROTI. Before and during the occurrences of strong scintillation, there was Large-Scale Wave Structure (LSWS) which provided the seed ionization perturbation to trigger ESF irregularities and contributed to the periodic structure of TEC.

     

  • loading
  • [1]
    ABDU M A. Outstanding problems in the equatorial ionosphere thermosphere electrodynamics relevant to spread F[J]. J. Atmos. Sol. Terr. Phys., 2001, 63:869-884
    [2]
    WHALEN J A. Dependence of equatorial bubbles and bottomside spread F on season, magnetic activity, and E×B drift velocity during solar maximum[J]. J. Geophys. Res., 2002, 107(A2):SIA 3-1-9
    [3]
    FEJER B G, KELLEY M C. Ionospheric irregularities[J]. Rev. Geophys., 1980, 18:401-450
    [4]
    FEJER B G, SCHERLIESS L, DEPAULA E R. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F[J]. J. Geophys. Res., 1999, 104:19859-19869
    [5]
    SULTAN P J. Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F[J]. J. Geophys. Res., 1996, 101:26875-26891
    [6]
    TSUNODA R T. On the enigma of day-to-day variability in Wave structure in equatorial spread F[J]. Geophys. Res. Lett., 2005, 32:L08103
    [7]
    TSUNODA R T, WHITE B R. On the generation and growth of equatorial backscatter plume I. Wave structure in the bottomside F layer[J]. J. Geophys. Res., 1981, 86:3610-3616
    [8]
    SINGH S, JOHNSON F S, POWER R A. Gravity wave seeding of equatorial plasma bubbles[J]. J. Geophys. Res., 1997, 102:7399-7410.DOI: 10.1029/96JA03998
    [9]
    AARONS J, MENDILLO M, YANTOSCA R. GPS phase fluctuations in the equatorial region during the MISETA 1994 campaign[J]. J. Geophys. Res., 1996, 101:26851-26862
    [10]
    PI X, MANNUCCI A J, LINDQWISTER U J, et al. Monitoring of global ionospheric irregularities using the world-wide GPS network[J]. Geophys. Res. Lett., 1997, 24:2283-2286
    [11]
    BHATTACHARYYA A, BEACH T L, BASU S, et al. Nighttime equatorial ionosphere:GPS scintillations and differential carrier phase fluctuations[J]. Radio Sci., 2000, 35:209-224
    [12]
    VALLADARES C E, VILLALOBOS J, SHEEHAN R, et al. Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers[J]. Ann. Geophys., 2004, 22:3155-3175
    [13]
    DASHORA N, PANDEY R. Observations in equatorial anomaly region of total electron content enhancements and depletions[J]. Ann. Geophys., 2005, 23:2449-2456
    [14]
    NISHIOKA M, SAITO A, TSUGAWA T. Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks[J]. J. Geophys. Res., 2008, 113:A05301.DOI: 10.1029/2007JA012605
    [15]
    SRIPATHI S, BOSE S, PATRA A K, et al. Simultaneous observations of ESF irregularities over Indian region using radar and GPS[J]. Ann. Geophys., 2008, 26:3197-3213
    [16]
    SRIPATHI S, KAKAD B, BHATTACHARYYA A. Study of equinoctial asymmetry in the Equatorial Spread F (ESF) irregularities over Indian region using multiinstrument observations in the descending phase of solar cycle 23[J]. J. Geophys. Res., 2011, 116:A11302
    [17]
    DAS A, DASGUPTA A. Precursors of Equatorial Spread F observing GPS TEC data from different GAGAN stations in India[J]. Adv. Space Res., 2012, 50:167-181
    [18]
    DENG B, HUANG J, LIU W, et al. GPS scintillation and TEC depletion near the northern crest of equatorial anomaly over South China[J]. Adv. Space Res., 2013, 51:356-365
    [19]
    DENG B, HUANG J, KONG D, et al. Temporal and spatial distributions of TEC depletions with scintillations and ROTI over south China[J]. Adv. Space Res., 2015, 55:259-268
    [20]
    TSUNODA R T, TOWLE D. On the spatial relationship of 1-Meter equatorial spread-F irregularities and depletions in total electron content[J]. Geophys. Res. Lett., 1979, 6(11):873-876
    [21]
    BEACH T L, KINTNER P M. Simultaneous global positioning system observations of equatorial scintillations and total electron content fluctuations[J]. J. Geophys. Res., 1999, 104(22):553-565
    [22]
    OLWENDO J O, CILLIERS P J, BAKI P, et al. Using GPS-SCINDA observations to study the correlation between scintillation, total electron content enhancement and depletions over the Kenyan region[J]. Adv. Space Res., 2012, 49:1363-1372
    [23]
    BASU S, GROVES K M, QUINN J M, et al. A comparison of TEC fluctuations and scintillations at Ascension Island[J]. J. Atmos. Sol. Terr. Phys., 1999, 61:1219-1226
    [24]
    HUANG C S, KELLEY M C. Nonlinear evolution of equatorial spread F:2.Gravity wave seeding of Rayleigh-Taylor instability[J]. J. Geophys. Res., 1996, 101:293-302
    [25]
    THAMPI S V, YAMAMOTO M, TSUNODA R T, et al. First observations of large-scale wave structure and equatorial spread F using CERTO radio beacon on the C/NOFS satellite[J]. Geophys. Res. Lett., 2009, 36:L18111. DOI: 10.1029/2009GL039887
    [26]
    ROTTGER J. Wavelike structures of large scale equatorial spread F irregularities[J]. J. Atmos. Terr. Phys., 1973, 35:1195-1196
    [27]
    SRIDHARAN R, MALA S, BAGIHA, et al. A novel method based on GPS TEC to forecast L band scintillations over the equatorial region through a case study[J]. J. Atmos. Terr. Phys., 2012, 80:230-238
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1126) PDF Downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return