Volume 40 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
ZHOU Zilu, ZUO Pingbing, SONG Xiaojian. Observation of a Slow Shock Associated with Reconnection Exhaust inside the Boundary Layer of Magnetic Cloud at 1 AU[J]. Chinese Journal of Space Science, 2020, 40(4): 471-478. doi: 10.11728/cjss2020.04.471
Citation: ZHOU Zilu, ZUO Pingbing, SONG Xiaojian. Observation of a Slow Shock Associated with Reconnection Exhaust inside the Boundary Layer of Magnetic Cloud at 1 AU[J]. Chinese Journal of Space Science, 2020, 40(4): 471-478. doi: 10.11728/cjss2020.04.471

Observation of a Slow Shock Associated with Reconnection Exhaust inside the Boundary Layer of Magnetic Cloud at 1 AU

doi: 10.11728/cjss2020.04.471 cstr: 32142.14.cjss2020.04.471
  • Received Date: 2019-05-20
  • Rev Recd Date: 2019-11-25
  • Publish Date: 2020-07-15
  • A pair of slow shocks in the Petschek reconnection model facilitate the energy transfer from magnetic field to kinetic and thermal energy of plasmas. In the past decade, a large amount of Petschek-like Reconnection Exhausts (RE) have been reported, but slow shocks bounding the REs are seldom identified. In this paper, a slow shock bounding a reconnection exhaust was identified in the front Boundary Layer (BL) of a Magnetic Cloud (MC) observed by WIND spacecraft on 27 February 2012. The observations of the jump conditions across the shock are in good agreement with the Rankine-Hugoniot relations. The intermediate Mach numbers are less than 1 on both sides of the shock. The slow Mach number is above unit (2.94) in the upstream side but below unit (0.65) in the downstream. The extremely low plasma beta (0.08) in the MC and the occurrence of magnetic reconnection in the MCBL may explain the formation of this slow shock.

     

  • loading
  • [1]
    PASCHMANN G, SONNERUP B U Ö, PAPAMASTORAKIS I, et al. Plasma acceleration at the Earth's magnetopause:evidence for reconnection[J]. Nature, 1979, 282(5736):243-246
    [2]
    OIEROSET M, PHAN T D, FUJIMOTO M, et al. In situ detection of collisionless reconnection in the Earth's magnetotail[J]. Nature, 2001, 412(6845):414-417
    [3]
    BURCH J L, TORBERT R B, PHAN T D, et al. Electron-scale measurements of magnetic reconnection in space[J]. Science, 2016, 352(6290).DOI: 10.1126/science.aaf2939
    [4]
    TORBERT R B, BURCH J L, PHAN T D, et al. Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space[J]. Science, 2018, 362(6421):1391-1395
    [5]
    PHAN T D, GOSLING J T, DAVIS M S, et al. A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind[J]. Nature, 2006, 439(7073):175-178
    [6]
    GOSLING J T. Magnetic reconnection in the solar wind[J]. Space Sci. Rev., 2011, 172(1/2/3/4):187-200
    [7]
    GOSLING J T, ERIKSSON S, MCCOMAS D J, et al. Multiple magnetic reconnection sites associated with a coronal mass ejection in the solar wind[J]. J. Geophys. Res.:Space Phys., 2007, 112(A8).DOI: 10.1029/2007JA012418
    [8]
    PHAN T D, GOSLING J T, PASCHMANN G, et al. The dependence of magnetic reconnection on plasma β and magnetic shear:evidence from solar wind observations[J]. Astrophys. J., 2010, 719(2):199-203
    [9]
    XU X, WEI F, FENG X. Observations of reconnection exhausts associated with large-scale current sheets within a complex ICME at 1AU[J]. J. Geophys. Res.:Space Phys., 2011, 116(A5).DOI: 10.1029/2010JA016159
    [10]
    WANG Y, WEI F S, FENG X S, et al. Energetic electrons associated with magnetic reconnection in the magnetic cloud boundary layer[J]. Phys. Rev. Lett., 2010, 105(19):195007
    [11]
    RUFFENACH A, LAVRAUD B, OWENS M J, et al. Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation[J]. J. Geophys. Res.:Space Phys., 2012, 117(A9).DOI: 10.1029/2012JA017624
    [12]
    RUFFENACH A, LAVRAUD B, FARRUGIA C J, et al. Statistical study of magnetic cloud erosion by magnetic reconnection[J]. J. Geophys. Res.:Space Phys., 2015, 120(1):43-60
    [13]
    GOSLING J T. Direct evidence for magnetic reconnection in the solar wind near 1AU[J]. J. Geophys. Res., 2005, 110(A1).DOI: 10.1029/2004ja010809
    [14]
    PETSCHEK H E. Magnetic Field Annihilation[M]. Washington:NASA Special Publication, 1964:425
    [15]
    FENG H, LI Q, WANG J, et al. Observation of two slow shocks associated with magnetic reconnection exhausts in the interplanetary space[J]. Solar Phys., 2017, 292(4):53
    [16]
    PHAN T D, GOSLING J T, DAVIS M S. Prevalence of extended reconnection X-lines in the solar wind at 1AU[J]. Geophys. Res. Lett., 2009, 36(9).DOI: 10.1029/2009GL037713
    [17]
    ZUO P B, WEI F S, FENG X S. Observations of an interplanetary slow shock associated with magnetic cloud boundary layer[J]. Geophys. Res. Lett., 2006, 33(15). DOI: 10.1029/2006gl026419
    [18]
    ZUO P B, FENG X S. The plasma and magnetic field characteristics of adouble discontinuity in interplanetary space[J]. Solar Phys., 2007, 240(2):347-357
    [19]
    ZHOU Z, WEI F, FENG X, et al. Observation of interplanetary slow shock pair associated with reconnection exhaust in magnetic cloud boundary layer[J]. Astrophys. J., 2018, 863(1).DOI: 10.3847/1538-4357/aad098
    [20]
    WEI F. Identification of the magnetic cloud boundary layers[J]. J. Geophys. Res., 2003, 108(A6).DOI: 10.1029/2002ja009511
    [21]
    WEI F, LIU R, FENG X, et al. Magnetic structures inside boundary layers of magnetic clouds[J]. Geophys. Res. Lett., 2003, 30(24).DOI: 10.1029/2003gl018116
    [22]
    WEI F, FENG X, YANG F, et al. A new non-pressure-balanced structure in interplanetary space:Boundary layers of magnetic clouds[J]. J. Geophys. Res., 2006, 111(A3). DOI: 10.1029/2005JA011272
    [23]
    LOPEZ R E. Solar cycle invariance in solar wind proton temperature relationships[J]. J. Geophys. Res., 1987, 92(A10):11189-11194
    [24]
    RICHARDSON I G, CANE H V. Regions of abnormally low proton temperature in the solar wind (1965-1991) and their association with ejecta[J]. J. Geophys. Res., 1995, 100(A12):23397-23412
    [25]
    LEPPING R P, ACÑNA M H, BURLAGA L F, et al. The WIND magnetic field investigation[J]. Space Sci. Rev., 1995, 71(1/2/3/4):207-229
    [26]
    LIN R P, ANDERSON K A, ASHFORD S, et al. A three-dimensional plasma and energetic particle investigation for the wind spacecraft[J]. Space Sci. Rev., 1995, 71(1/2/3/4):125-153
    [27]
    WHANG Y C. Slow shocks and their transition to fast shocks in the inner solar wind[J]. J. Geophys. Res., 1987, 92(A5):4349-4356
    [28]
    PASCHMANN G, SCHWARTZ S. Analysis methods for multi-spacecraft data[C]//Proceedings of the Cluster-Ⅱ Workshop Multiscale/Multipoint Plasma Measurements. Paris:European Space Agency (ESA), 2000
    [29]
    HUDSON P D. Discontinuities in an anisotropic plasma and their identification in the solar wind[J]. Planet. Space Sci., 1970, 18(11):1611-1622
    [30]
    PASCHMANN G, PAPAMASTORAKIS I, BAUMJOHANN W, et al. The magnetopause for large magnetic shear:AMPTE/IRM observations[J]. J. Geophys. Res., 1986, 91(A10):1099-1115
    [31]
    WHANG Y C, LARSON D, LIN R P, et al. Plasma and magnetic field structure of a slow shock:WIND observations in interplanetary space[J]. Geophys. Res. Lett., 1998, 25(14):2625-2628
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1195) PDF Downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return