Citation: | ZHOU Zilu, ZUO Pingbing, SONG Xiaojian. Observation of a Slow Shock Associated with Reconnection Exhaust inside the Boundary Layer of Magnetic Cloud at 1 AU[J]. Chinese Journal of Space Science, 2020, 40(4): 471-478. doi: 10.11728/cjss2020.04.471 |
[1] |
PASCHMANN G, SONNERUP B U Ö, PAPAMASTORAKIS I, et al. Plasma acceleration at the Earth's magnetopause:evidence for reconnection[J]. Nature, 1979, 282(5736):243-246
|
[2] |
OIEROSET M, PHAN T D, FUJIMOTO M, et al. In situ detection of collisionless reconnection in the Earth's magnetotail[J]. Nature, 2001, 412(6845):414-417
|
[3] |
BURCH J L, TORBERT R B, PHAN T D, et al. Electron-scale measurements of magnetic reconnection in space[J]. Science, 2016, 352(6290).DOI: 10.1126/science.aaf2939
|
[4] |
TORBERT R B, BURCH J L, PHAN T D, et al. Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space[J]. Science, 2018, 362(6421):1391-1395
|
[5] |
PHAN T D, GOSLING J T, DAVIS M S, et al. A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind[J]. Nature, 2006, 439(7073):175-178
|
[6] |
GOSLING J T. Magnetic reconnection in the solar wind[J]. Space Sci. Rev., 2011, 172(1/2/3/4):187-200
|
[7] |
GOSLING J T, ERIKSSON S, MCCOMAS D J, et al. Multiple magnetic reconnection sites associated with a coronal mass ejection in the solar wind[J]. J. Geophys. Res.:Space Phys., 2007, 112(A8).DOI: 10.1029/2007JA012418
|
[8] |
PHAN T D, GOSLING J T, PASCHMANN G, et al. The dependence of magnetic reconnection on plasma β and magnetic shear:evidence from solar wind observations[J]. Astrophys. J., 2010, 719(2):199-203
|
[9] |
XU X, WEI F, FENG X. Observations of reconnection exhausts associated with large-scale current sheets within a complex ICME at 1AU[J]. J. Geophys. Res.:Space Phys., 2011, 116(A5).DOI: 10.1029/2010JA016159
|
[10] |
WANG Y, WEI F S, FENG X S, et al. Energetic electrons associated with magnetic reconnection in the magnetic cloud boundary layer[J]. Phys. Rev. Lett., 2010, 105(19):195007
|
[11] |
RUFFENACH A, LAVRAUD B, OWENS M J, et al. Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation[J]. J. Geophys. Res.:Space Phys., 2012, 117(A9).DOI: 10.1029/2012JA017624
|
[12] |
RUFFENACH A, LAVRAUD B, FARRUGIA C J, et al. Statistical study of magnetic cloud erosion by magnetic reconnection[J]. J. Geophys. Res.:Space Phys., 2015, 120(1):43-60
|
[13] |
GOSLING J T. Direct evidence for magnetic reconnection in the solar wind near 1AU[J]. J. Geophys. Res., 2005, 110(A1).DOI: 10.1029/2004ja010809
|
[14] |
PETSCHEK H E. Magnetic Field Annihilation[M]. Washington:NASA Special Publication, 1964:425
|
[15] |
FENG H, LI Q, WANG J, et al. Observation of two slow shocks associated with magnetic reconnection exhausts in the interplanetary space[J]. Solar Phys., 2017, 292(4):53
|
[16] |
PHAN T D, GOSLING J T, DAVIS M S. Prevalence of extended reconnection X-lines in the solar wind at 1AU[J]. Geophys. Res. Lett., 2009, 36(9).DOI: 10.1029/2009GL037713
|
[17] |
ZUO P B, WEI F S, FENG X S. Observations of an interplanetary slow shock associated with magnetic cloud boundary layer[J]. Geophys. Res. Lett., 2006, 33(15). DOI: 10.1029/2006gl026419
|
[18] |
ZUO P B, FENG X S. The plasma and magnetic field characteristics of adouble discontinuity in interplanetary space[J]. Solar Phys., 2007, 240(2):347-357
|
[19] |
ZHOU Z, WEI F, FENG X, et al. Observation of interplanetary slow shock pair associated with reconnection exhaust in magnetic cloud boundary layer[J]. Astrophys. J., 2018, 863(1).DOI: 10.3847/1538-4357/aad098
|
[20] |
WEI F. Identification of the magnetic cloud boundary layers[J]. J. Geophys. Res., 2003, 108(A6).DOI: 10.1029/2002ja009511
|
[21] |
WEI F, LIU R, FENG X, et al. Magnetic structures inside boundary layers of magnetic clouds[J]. Geophys. Res. Lett., 2003, 30(24).DOI: 10.1029/2003gl018116
|
[22] |
WEI F, FENG X, YANG F, et al. A new non-pressure-balanced structure in interplanetary space:Boundary layers of magnetic clouds[J]. J. Geophys. Res., 2006, 111(A3). DOI: 10.1029/2005JA011272
|
[23] |
LOPEZ R E. Solar cycle invariance in solar wind proton temperature relationships[J]. J. Geophys. Res., 1987, 92(A10):11189-11194
|
[24] |
RICHARDSON I G, CANE H V. Regions of abnormally low proton temperature in the solar wind (1965-1991) and their association with ejecta[J]. J. Geophys. Res., 1995, 100(A12):23397-23412
|
[25] |
LEPPING R P, ACÑNA M H, BURLAGA L F, et al. The WIND magnetic field investigation[J]. Space Sci. Rev., 1995, 71(1/2/3/4):207-229
|
[26] |
LIN R P, ANDERSON K A, ASHFORD S, et al. A three-dimensional plasma and energetic particle investigation for the wind spacecraft[J]. Space Sci. Rev., 1995, 71(1/2/3/4):125-153
|
[27] |
WHANG Y C. Slow shocks and their transition to fast shocks in the inner solar wind[J]. J. Geophys. Res., 1987, 92(A5):4349-4356
|
[28] |
PASCHMANN G, SCHWARTZ S. Analysis methods for multi-spacecraft data[C]//Proceedings of the Cluster-Ⅱ Workshop Multiscale/Multipoint Plasma Measurements. Paris:European Space Agency (ESA), 2000
|
[29] |
HUDSON P D. Discontinuities in an anisotropic plasma and their identification in the solar wind[J]. Planet. Space Sci., 1970, 18(11):1611-1622
|
[30] |
PASCHMANN G, PAPAMASTORAKIS I, BAUMJOHANN W, et al. The magnetopause for large magnetic shear:AMPTE/IRM observations[J]. J. Geophys. Res., 1986, 91(A10):1099-1115
|
[31] |
WHANG Y C, LARSON D, LIN R P, et al. Plasma and magnetic field structure of a slow shock:WIND observations in interplanetary space[J]. Geophys. Res. Lett., 1998, 25(14):2625-2628
|