Citation: | AI Haiping, CHEN Li. Passivity Active Disturbance Rejection Collision Avoidance Compliant Control of Dual-arm Space Robot Capture Spacecraft[J]. Chinese Journal of Space Science, 2020, 40(4): 584-594. doi: 10.11728/cjss2020.04.584 |
[1] |
FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Prog. Aerosp. Sci., 2014, 68:1-26
|
[2] |
DAI Qiaolian, CHEN Li. L2 Back-stepping control based on disturbance observer for space robot under dead-zone effect[J]. Chin. J. Space Sci., 2017, 37(4):499-506(戴巧莲, 陈力. 具有死区特性的空间机器人基于干扰观测器的L2反步控制[J]. 空间科学学报, 2017, 37(4):499-506)
|
[3] |
GUO Chuangqiang, NI Fenglei, LIU Hong. Spacecraft attitude disturbance optimization of space robot under multi-position restraint[J]. Chin. J. Space Sci., 2015, 35 (2):230-236(郭闯强, 倪风雷, 刘宏. 多目标位姿约束下空间机器人载体姿态扰动优化[J]. 空间科学学报, 2015, 35(2):230-236)
|
[4] |
YU X Y, CHEN L. Singular perturbation adaptive control and vibration suppression of free-flying flexible space manipulators[J]. Proc. Inst. Mech. Eng. Part C:J. Mech. Eng. Sci., 2015, 229(11):1989-1997
|
[5] |
BONING P, DUBOSKY S. A kinematic approach to determining the optimal actuator sensor architecture for space robots[J]. Int. J. Robot. Res., 2011, 30(9):1194-1204
|
[6] |
ZHAO Hang, ZHAO Yang, TIAN Hao, et al. Key techniques and applications of space cellular robotic system[J]. J. Astronaut., 2018, 39(10):16-25(赵航, 赵阳, 田浩, 等. 空间细胞机器人系统关键技术及其应用[J]. 宇航学报, 2018, 39(10):16-25)
|
[7] |
YUAN Changqing, LI Junfeng, WANG Tianshu, et al. An optimal and robust attitude-tracking control of spacecraft based on inverse system method[J]. Eng. Mech., 2008, 25(2):214-218(袁长清, 李俊峰, 王天舒, 等. 基于逆系统方法的航天器姿态跟踪最优鲁棒控制[J]. 工程力学, 2008, 25(2):214-218)
|
[8] |
PENG J Q, XU W F, LIANG B, et al. Pose measurement and motion estimation of space non-cooperative targets based on Laser Radar and stereo-vision fusion[J]. IEEE Sens. J., 2019, 19(8):3008-3019
|
[9] |
JIA Y H, HU Q, XU S J. Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters[J]. Acta Mech. Sin., 2014, 30(1):112-124
|
[10] |
CHENG Jing, CHEN Li. Elm neural network control of attitude management and auxiliary docking maneuver after dual-arm space robot capturing spacecraft[J]. Robot, 2017, 39(5):724-732(程靖, 陈力. 空间机器人双臂捕获航天器后姿态管理、辅助对接操作一体化ELM神经网络控制[J]. 机器人, 2017, 39(5):724-732)
|
[11] |
REKLEITIS G, PAPADOPOULOS E. On-orbit cooperating space robotic servicers handling a passive object[J]. IEEE Trans. Aerosp. Electron. Syst., 2015, 51(2):802-814
|
[12] |
AGHILI F. A prediction and motion-planning scheme for visually guided robotic capturing of free-Floating tumbling objects with uncertain dynamics[J]. IEEE Trans. Robot., 2012, 28(3):634-649
|
[13] |
OKI T, ABIKO S, NAKANISHI H, et al. Time-optimal detumbling maneuver along an arbitrary arm motion during the capture of a target satellite[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco:IEEE, 2011:625-630
|
[14] |
GU X, WANG K, CHENG T, et al. Mechanical design of a 3-DOF humanoid soft arm based on modularized series elastic actuator[C]//IEEE International Conference on Mechatronics and Automation. Beijing:IEEE, 2015:1127-1131
|
[15] |
WANG M, SUN L, YI W, et al. Nonlinear disturbance observer based torque control for series elastic actuator[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon:IEEE, 2016:286-291
|
[16] |
HUANG Y, XUE W. Active disturbance rejection control:methodology and theoretical analysis[J]. ISA Trans., 2014, 53(4):963-976
|
[17] |
REN C, MA S. Passivity-based model free control of an omnidirectional mobile robot[C]//IEEE International Conference on Mechatronics. Nagoya:IEEE, 2015:262-267
|
[18] |
QING Z, LINDA Q. On Stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics[C]//IEEE Conference on Decision and Control. New Orleans:IEEE, 2007:12-14
|