Citation: | SHEN Xuhui, ZEREN Zhima, HUANG Jianping, YANG Yanyan, ZHAO Shufan, YAN Rui, ZHANG Zhenxia, LIU Dapeng, WANG Qiao, CHU Wei, LU Hengxin, XU Song, GUO Feng, TAN Qiao, LI Wenjing, ZHOU Na, SONG Fuxi. Current Status and Main Scientific Results of In-flight CSES Mission[J]. Chinese Journal of Space Science, 2020, 40(5): 662-678. doi: 10.11728/cjss2020.05.662 |
[1] |
SHEN X, ZONG Q, ZHANG X. Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results[J]. Earth Planet. Phys., 2018, 2(6):439-443
|
[2] |
SHEN X, ZHANG X, YUAN S, et al. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission[J]. Sci. China Technol. Sci., 2018, 61(5):634-642
|
[3] |
CHENG B, ZHOU B, MAGNES W, et al. High precision magnetometer for geomagnetic exploration onboard of the China Seismo-Electromagnetic Satellite[J]. Sci. China Technol. Sci., 2018, 61(5):659-668
|
[4] |
ZHOU B, YANG Y, ZHANG Y, et al. Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite[J]. Earth Planet. Phys., 2018, 2(6):455-461
|
[5] |
POLLINGER A, LAMMEGGER R, MAGNES W, et al. Coupled dark state magnetometer for the China Seismo-Electromagnetic Satellite[J]. Meas. Sci. Technol., 2018, 29(9):095103
|
[6] |
CAO J, ZENG L, ZHAN F, et al. The electromagnetic wave experiment for CSES mission:Search coil magnetometer[J]. Sci. China Technol. Sci., 2018, 61(5):653-658
|
[7] |
HUANG J, SHEN X, ZHANG X, et al. Application system and data description of the China Seismo-Electromagnetic Satellite[J]. Earth Planet. Phys., 2018, 2(6):444-454
|
[8] |
YAN R, GUAN Y, SHEN X, et al. The Langmuir Probe onboard CSES:data inversion analysis method and first results[J]. Earth Planet. Phys., 2018, 2(6):479-488
|
[9] |
LIU C, GUAN Y, ZHENG X, et al. The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite[J]. Sci. China Technol. Sci., 2019, 62(5):829-838
|
[10] |
CHU W, HUANG J, SHEN X, et al. Preliminary results of the High Energetic Particle Package onboard the China Seismo-Electromagnetic Satellite[J]. Earth Planet. Phys., 2018, 2(6):489-498
|
[11] |
LI X Q, XU Y B, AN Z H, et al. The high-energy particle package onboard CSES[J]. Radiat. Detect. Technol. Methods, 2019, 3(3). DOI: 10.1007/s41605-019-0101-7
|
[12] |
LIN J, SHEN X, HU L, et al. CSES GNSS ionospheric inversion technique, validation and error analysis[J]. Sci. China Technol. Sci., 2018, 61:669-677
|
[13] |
CHEN L, OU M, YUAN Y, et al. Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1[J]. Earth Planet. Phys., 2018, 2(6):505-514
|
[14] |
HULOT G, VIGNERON P, L GER J-M, et al. Swarm's absolute magnetometer experimental vector mode, an innovative capability for space magnetometry[J]. Geophys. Res. Lett., 2015, 42(5):1352-1359
|
[15] |
Finlay C C, Olsen N, Kotsiaros S, et al. Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model[J]. Earth Planets Space, 2016, 68:112
|
[16] |
ZHIMA Z, CAO J, LIU W, et al. Storm time evolution of ELF/VLF waves observed by DEMETER satellite[J]. J. Geophys. Res.:Space Phys., 2014. DOI: 10.1002/2013JA019237
|
[17] |
CHEN L, SANTOL K O, HAJOŠ M, et al. Source of the low-altitude hiss in the ionosphere[J]. Geophys. Res. Lett., 2017. DOI: 10.1002/2016GL072181
|
[18] |
Zeren Zhima, CHEN L, XIONG Y, et al. On the origin of ionospheric hiss:a conjugate observation[J]. J. Geophys. Res.:Space Phys., 2017, 122(11):11784-711793
|
[19] |
PARROT M, SANTOL K O, NĔMEC F. Chorus and chorus-like emissions seen by the ionospheric satellite DEMETER[J]. J. Geophys. Res.:Space Phys., 2016, 121(4):3781-3792
|
[20] |
Zeren Zhima, CAO J, LIU W, et al. DEMETER observations of high-latitude chorus waves penetrating the plasmasphere during a geomagnetic storm[J]. Geophys. Res. Lett., 2013, 40(22):5827-5832
|
[21] |
HAYOSH M, NĚMEC F, SANTOL K O, et al. Propagation properties of quasiperiodic VLF emissions observed by the DEMETER spacecraft[J]. Geophys. Res. Lett., 2016, 43(3):1007-1014
|
[22] |
NĚMEC F, BEZDĚKOV B, MANNINEN J, et al. Conjugate observations of a remarkable quasiperiodic event by the low-altitude DEMETER spacecraft and ground-based instruments[J]. J. Geophys. Res.:Space Phys., 2016, 121(9):8790-8803
|
[23] |
PARROT M, BERTHELIER J, LEBRETON J, et al. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions[J]. Phys. Chem. Earth, 2006, 31(4-9):486-495
|
[24] |
ZHANG Z, CHEN L, LIU S, et al. Chorus acceleration of relativistic electrons in extremely low L-Shell during geomagnetic storm of August 2018[J]. Geophys. Res. Lett., 2020, 47(4). DOI: 10.1029/2019GL086226
|
[25] |
ZHANG Z, CHEN L, LI X, et al. Observed Propagation Route of VLF Transmitter Signals in the Magnetosphere[J]. J. Geophys. Res.:Space Phys., 2018, 123(7):5528-5537
|
[26] |
Zhao Shufan, Liao Li, Zhang Xuemin. Trans-ionspheric VLF wave power absorption of terrestrial VLF signal[J]. Chin. J. Geophys., 2017, 60(8):3004-3014(in Chinese)
|
[27] |
ZHAO S, ZHOU C, SHEN X, et al. Investigation of VLF Transmitter Signals in the Ionosphere by ZH-1 Observations and Full-Wave Simulation[J]. J. Geophys. Res.:Space Phys., 2019, 124(6):4697-4709
|
[28] |
ZHANG Z-X, LI X-Q, WANG C-Y, et al. North west cape-induced electron precipitation and theoretical simulation[J]. Chin. Phys. B, 2016, 25(11):119401
|
[29] |
ZHAO B Q, WANG M, YU T, et al. Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake[J]. J. Geophys. Res.:Space Phys., 2008, 113, A11. DOI: 10.1029/2008JA013613
|
[30] |
LIU J Y, CHEN Y I, PULINETS S A, et al. Seismo-ionospheric signatures prior to M ≥ 6.0 Taiwan earthquakes[J]. Geophys. Res. Lett., 2000, 27(19):3113-3116
|
[31] |
LIU J Y, CHEN Y I, CHEN C H, et al. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake[J]. J. Geophys. Res.:Space Phys., 2009, 114(A4). DOI: 10.1029/2008JA013698
|
[32] |
HAYAKAWA M, KASAHARA Y, NAKAMURA T, et al. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes[J]. J. Geophys. Res.:Space Phys., 2010, 115(A9). DOI: 10.1029/2009JA015143
|
[33] |
LIU J Y, TSAI Y B, CHEN S W, et al. Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004[J]. Geophys. Res. Lett., 2006, 33(2). DOI: 10.1029/2005GL023963
|
[34] |
HAO Y Q, XIAO Z, ZHANG D H. Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake[J]. J. Geophys. Res.:Space Phys., 2012, 117. DOI: 10.1029/2011JA017036
|
[35] |
FREUND F. Pre-earthquake signals:Underlying physical processes[J]. J. Asian Earth Sci., 2011, 41(4/5):383-400
|
[36] |
FREUND F, KULAHCI I G, CYR G, et al. Air ionization at rock surfaces and pre-earthquake signals[J]. J. Atmos. Solar-Terr. Phys., 2009, 71(17/18):1824-1834
|
[37] |
FREUND F, TAKEUCHI A, LAU B W, et al. Stress-Induced Changes in the Electrical Conductivity of Igneous Rocks and the Generation of Ground Currents[J]. Terr. Atmos. Ocean. Sci., 2004, 15(3):437-467
|
[38] |
SOROKIN V M, CHMYREV V M, YASCHENKO A K. Electrodynamic model of the lower atmosphere and the ionosphere coupling[J]. J. Atmos. Solar-Terr. Phys., 2001, 63(16):1681-1691
|
[39] |
KUO C L, HUBA J D, JOYCE G, et al. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges[J]. J. Geophys. Res.:Space Phys., 2011, 116, A10
|
[40] |
KUO C L, LEE L C, HUBA J D. An improved coupling model for the lithosphere-atmosphere-ionosphere system[J]. J. Geophys. Res.:Space Phys., 2014, 119(4):3189-3205
|
[41] |
ZHOU C, LIU Y, ZHAO S F, et al. An electric field penetration model for seismo-ionospheric research[J]. Adv. Space Res., 2017, 60(10):2217-2232
|
[42] |
FREUND F, TAKEUCHI A, LAU B W S. Electric currents streaming out of stressed igneous rocks-A step towards understanding pre-earthquake low frequency EM emissions[J]. Phys. Chem. Earth, 2006, 31(4-9):389-396
|
[43] |
GAO Y X, HARRIS J M, WEN J, et al. Modeling of the coseismic electromagnetic fields observed during the 2004 Mw 6.0 Parkfield earthquake[J]. Geophys. Res. Lett., 2016, 43(2):620-627
|
[44] |
HAYAKAWA M. Probing the lower ionospheric perturbations associated with earthquakes by means of subionospheric VLF/LF propagation[J]. Earthquake Sci., 2011, 24(6):609-637
|
[45] |
NĚMEC F, SANTOLíK O, PARROT M. Possible seismic influence on VLF wave intensity:observations by a low-altitude satellite[C]//WDS'08 Proceedings of Contributed Papers, 2008
|
[46] |
LEHTINEN N G, INAN U S. Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet[J]. J. Geophys. Res., 2008, 113, A06301
|
[47] |
LIAO L, ZHAO S F, SHEN X H, et al. Characteristic analysis and full wave simulation of electrical field for China seismo-electromagnetic satellite observations radiated from VLF transmitter[J]. Chin. J. Geophys., 2019, 62(4):1210-1217
|
[48] |
YANG Y Y, ZHIMA Z R, SHEN X H, et al. The first intense storm event recorded by the China seismo-electromagnetic satellite[J]. Space Weather, 2019. DOI: 10.1029/2019SW002243
|
[49] |
LARKINA V I, MIGULIN V V, MOLCHANOV O A, et al. Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones[J]. Phys. Earth Planet. Int., 1989, 57(1):100-109
|
[50] |
PARROT M. VLF emissions associated with earthquakes and observed in the ionosphere and the magnetosphere[J]. Phys. Earth Planet. Int., 1989, 57(1/2):86-99
|
[51] |
YAN R, SHEN X, HUANG J, et al. Examples of unusual ionospheric observations by the CSES prior to earthquakes[J]. Earth Planet. Phys., 2018, 2(6):515-526
|
[52] |
PULLINETS S, OUZOUNOV D. The Possibility of Earthquake Forecasting[M]. Bristol:IOP Publishing, 2018
|
[53] |
HAYAKAWA M. Electromagnetic phenomena associated with earthquakes:a frontier in terrestrial electromagnetic noise environment[J]. recent res. develop. Geophys., 2004, 6:81-112
|