Citation: | SONG Xiaojian, ZUO Pingbing, ZHOU Zilu. Automatic Identification of Magnetopause Crossing Events[J]. Chinese Journal of Space Science, 2021, 41(3): 375-383. doi: 10.11728/cjss2021.03.375 |
[1] |
CAHILL L J, AMAZEEN P G. The boundary of the geomagnetic field[J]. J. Geophys. Res., 1963, 68(7):1835-1843
|
[2] |
PLASCHKE F, ANGELOPOULOS V, GLASSMEIER K H. Magnetopause surface waves: THEMIS observations compared to MHD theory[J]. J. Geophys. Res.: Space Phys., 2013, 118(4):1483-1499
|
[3] |
PHAN T D, PASCHMANN G. Low-latitude dayside magnetopause and boundary layer for high magnetic shear: 1. Structure and motion[J]. J. Geophys. Res.: Space Phys., 1996, 101(A4):7801-7815
|
[4] |
SCHOLER M, TREUMANN R A. The low-latitude boundary layer at the flanks of the magnetopause[J]. Space Sci. Rev., 1997, 80(1):341-367
|
[5] |
SIBECK D G, LEPPING R P, LAZARUS A J. Magnetic field line draping in the plasma depletion layer[J]. J. Geophys. Res. Space Phys., 1990, 95(A3):2433-2440
|
[6] |
ØIEROSET M, MITCHELL D L, PHAN T D, et al. The magnetic field pile-up and density depletion in the martian magnetosheath: a comparison with the plasma depletion layer upstream of the Earth's magnetopause[J]. Space Sci. Rev., 2004, 111(1):185-202
|
[7] |
PHAN T D, ESCOUBET C P, REZEAU L, et al. Magnetopause processes[J]. Space Sci. Rev., 2005, 118:367-424
|
[8] |
LANZEROTTI L J, MACLENNAN C G. Hydromagnetic waves associated with possible flux transfer events[J]. Astrophys. Space Sci., 1988, 144(1):279-290
|
[9] |
OTTO A, FAIRFIELD D H. Kelvin-helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations[J]. J. Geophys. Res.: Space Phys., 2000, 105(A9):21175-21190
|
[10] |
YONG J C, OH S H, MIN K. Magnetic reconnection induced by Kelvin-Helmholtz instability[J]. Astrophys. Space Sci., 1996, 236(2):201-214
|
[11] |
RYU D S, JONES T W, FRANK A. The magnetohydrodynamic Kelvin-Helmholtz instability: a three-dimensional study of nonlinear evolution[J]. Astrophys. J., 2000, 545(1):475-493
|
[12] |
HASEGAWA H. Structure and dynamics of the magnetopause and its boundary layers[J]. Monog. Environ. Earth Planet., 2012, 1(2):71-119
|
[13] |
PARK E, MOON Y J, LEE K. Observational test of empirical magnetopause location models using geosynchronous satellite data[J]. J. Geophys. Res.: Space Phys., 2016, 121(11):10994-11006
|
[14] |
AUBRY M P, RUSSELL C T, KIVELSON M G. Inward motion of the magnetopause before a substorm[J]. J. Geophys. Res., 1970, 75(34):7018-7031
|
[15] |
DMITRIEV A, SUVOROVA A, CHAO J K. A predictive model of geosynchronous magnetopause crossings[J]. J. Geophys. Res.: Space Phys., 2011, 116(A5):A05208
|
[16] |
CASE N A. WILD J A. The location of the Earth's magnetopause: a comparison of modeled position and in situ Cluster data[J]. J. Geophys. Res.: Space Phys., 2013, 118(10):6127-6135
|
[17] |
IVCHENKO N V, SIBECK N V, TAKAHASHI D G, et al. A statistical study of the magnetosphere boundary crossings by the Geotail satellite[J]. Geophys. Res. Lett., 2000, 27(18):2881-2884
|
[18] |
SUVOROVA A, DMITRIEV A, CHAO J K, et al. Necessary conditions for geosynchronous magnetopause crossings[J]. J. Geophys. Res., 2005, 110(A1):A01206
|
[19] |
JELINEK K, NEMECEK Z, SAFRANKOVA J. A new approach to magnetopause and bow shock modeling based on automated region identification[J]. J. Geophys. Res.: Space Phys., 2012, 117(A5):A05208
|