Volume 41 Issue 3
May  2021
Turn off MathJax
Article Contents
SONG Xiaojian, ZUO Pingbing, ZHOU Zilu. Automatic Identification of Magnetopause Crossing Events[J]. Chinese Journal of Space Science, 2021, 41(3): 375-383. doi: 10.11728/cjss2021.03.375
Citation: SONG Xiaojian, ZUO Pingbing, ZHOU Zilu. Automatic Identification of Magnetopause Crossing Events[J]. Chinese Journal of Space Science, 2021, 41(3): 375-383. doi: 10.11728/cjss2021.03.375

Automatic Identification of Magnetopause Crossing Events

doi: 10.11728/cjss2021.03.375 cstr: 32142.14.cjss2021.03.375
  • Received Date: 2019-09-09
  • Rev Recd Date: 2020-04-05
  • Publish Date: 2021-05-15
  • The magnetopause is the key area of mass, momentum and energy coupling between the solar wind and the magnetosphere. The Magnetopause Crossing Events (MCEs) are usually identified by visual inspection of the plots, which is labor intensive and inefficient. Here we develop a novel procedure that is able to rapidly identify MCEs around the subsolar point and accurately define the transition layer between the magnetosphere and the magnetosheath. Here we synthetically consider the characteristics of the variations of the magnetic field and the particle flux for the identification criteria so that false identifications are avoided to the greatest possible. To demonstrate the efficiency of this procedure, it is applied to the THEMIS observations from 2007 to 2018 when THEMIS's apogee is near the subsolar point. The procedure successfully determines 16758MCEs in about 6 hours on a common PC. The huge number of identified samples of MCEs would benefit the investigations on the magnetopause-related scientific problems, such as indentation of the magnetopause, solar wind-magnetosphere interaction, magnetic reconnection process, and so on. The accuracy and limitation of this algorithm are also analyzed in this paper.

     

  • loading
  • [1]
    CAHILL L J, AMAZEEN P G. The boundary of the geomagnetic field[J]. J. Geophys. Res., 1963, 68(7):1835-1843
    [2]
    PLASCHKE F, ANGELOPOULOS V, GLASSMEIER K H. Magnetopause surface waves: THEMIS observations compared to MHD theory[J]. J. Geophys. Res.: Space Phys., 2013, 118(4):1483-1499
    [3]
    PHAN T D, PASCHMANN G. Low-latitude dayside magnetopause and boundary layer for high magnetic shear: 1. Structure and motion[J]. J. Geophys. Res.: Space Phys., 1996, 101(A4):7801-7815
    [4]
    SCHOLER M, TREUMANN R A. The low-latitude boundary layer at the flanks of the magnetopause[J]. Space Sci. Rev., 1997, 80(1):341-367
    [5]
    SIBECK D G, LEPPING R P, LAZARUS A J. Magnetic field line draping in the plasma depletion layer[J]. J. Geophys. Res. Space Phys., 1990, 95(A3):2433-2440
    [6]
    ØIEROSET M, MITCHELL D L, PHAN T D, et al. The magnetic field pile-up and density depletion in the martian magnetosheath: a comparison with the plasma depletion layer upstream of the Earth's magnetopause[J]. Space Sci. Rev., 2004, 111(1):185-202
    [7]
    PHAN T D, ESCOUBET C P, REZEAU L, et al. Magnetopause processes[J]. Space Sci. Rev., 2005, 118:367-424
    [8]
    LANZEROTTI L J, MACLENNAN C G. Hydromagnetic waves associated with possible flux transfer events[J]. Astrophys. Space Sci., 1988, 144(1):279-290
    [9]
    OTTO A, FAIRFIELD D H. Kelvin-helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations[J]. J. Geophys. Res.: Space Phys., 2000, 105(A9):21175-21190
    [10]
    YONG J C, OH S H, MIN K. Magnetic reconnection induced by Kelvin-Helmholtz instability[J]. Astrophys. Space Sci., 1996, 236(2):201-214
    [11]
    RYU D S, JONES T W, FRANK A. The magnetohydrodynamic Kelvin-Helmholtz instability: a three-dimensional study of nonlinear evolution[J]. Astrophys. J., 2000, 545(1):475-493
    [12]
    HASEGAWA H. Structure and dynamics of the magnetopause and its boundary layers[J]. Monog. Environ. Earth Planet., 2012, 1(2):71-119
    [13]
    PARK E, MOON Y J, LEE K. Observational test of empirical magnetopause location models using geosynchronous satellite data[J]. J. Geophys. Res.: Space Phys., 2016, 121(11):10994-11006
    [14]
    AUBRY M P, RUSSELL C T, KIVELSON M G. Inward motion of the magnetopause before a substorm[J]. J. Geophys. Res., 1970, 75(34):7018-7031
    [15]
    DMITRIEV A, SUVOROVA A, CHAO J K. A predictive model of geosynchronous magnetopause crossings[J]. J. Geophys. Res.: Space Phys., 2011, 116(A5):A05208
    [16]
    CASE N A. WILD J A. The location of the Earth's magnetopause: a comparison of modeled position and in situ Cluster data[J]. J. Geophys. Res.: Space Phys., 2013, 118(10):6127-6135
    [17]
    IVCHENKO N V, SIBECK N V, TAKAHASHI D G, et al. A statistical study of the magnetosphere boundary crossings by the Geotail satellite[J]. Geophys. Res. Lett., 2000, 27(18):2881-2884
    [18]
    SUVOROVA A, DMITRIEV A, CHAO J K, et al. Necessary conditions for geosynchronous magnetopause crossings[J]. J. Geophys. Res., 2005, 110(A1):A01206
    [19]
    JELINEK K, NEMECEK Z, SAFRANKOVA J. A new approach to magnetopause and bow shock modeling based on automated region identification[J]. J. Geophys. Res.: Space Phys., 2012, 117(A5):A05208
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(869) PDF Downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return