Volume 41 Issue 3
May  2021
Turn off MathJax
Article Contents
LIU Kun, SHENG Dongsheng, WANG Feifei, ZHANG Hongbo, LI Jianru. High Precision Algorithm for Ionospheric VTEC Based on Single Ground-based GNSS Station[J]. Chinese Journal of Space Science, 2021, 41(3): 417-424. doi: 10.11728/cjss2021.03.417
Citation: LIU Kun, SHENG Dongsheng, WANG Feifei, ZHANG Hongbo, LI Jianru. High Precision Algorithm for Ionospheric VTEC Based on Single Ground-based GNSS Station[J]. Chinese Journal of Space Science, 2021, 41(3): 417-424. doi: 10.11728/cjss2021.03.417

High Precision Algorithm for Ionospheric VTEC Based on Single Ground-based GNSS Station

doi: 10.11728/cjss2021.03.417 cstr: 32142.14.cjss2021.03.417
  • Received Date: 2020-08-18
  • Rev Recd Date: 2020-10-15
  • Publish Date: 2021-05-15
  • Using the dual frequency GNSS observation data provided by IGS, the problems existing in Vertical Total Electron Content (VTEC) calculation using Kalman filtering method were analyzed, Kriging-Kalman algorithm was proposed, and the VTEC calculated by the two methods were compared. The results showed that: in the low latitude region, when the number of satellites in observation changed, the VTEC value calculated by Kalman filter method might have curve fracture anomaly; the VTEC value calculated by Kriging-Kalman method changed smoothly relatively. In addition, the changes of VTEC calculated by two method above during the flare were compared, it found that the change of VTEC calculated by Kalman filtering method was smaller than the increment of VTEC caused by flare, while the result of Kriging-Kalman method was more consistent with the actual change. All the results show that the accuracy of VTEC calculated using Kriging-Kalman method is higher in low latitude area, which can reflect the change of VTEC in abnormal space weather activities more accurately, and conducive to the daily accurate monitoring and engineering application of ionospheric VTEC.

     

  • loading
  • [1]
    YASYUKEVICH Y, ASTAFYEVA E, PADOKHIN A, et al. The 6 September 2017 X-class solar flares and their impacts on ionosphere, GNSS, and HF radio wave propagation[J]. Space Weather, 2018, 16:1013-1027
    [2]
    CHAKRABORTY S K, HAJRA R, DASGUPTA A. Ionospheric scintillation near the anomaly crest in relation to the variability of ambient ionization[J]. Radio Sci., 2012, 47:RS2006
    [3]
    SCHAER S. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System[D]. Berne Switzerland: University of Bern, 1999
    [4]
    GEORGIADIOU Y. Modeling the Ionosphere for Active Control Network of GPS Station[M]. Delft: LGR-Series-Publications of the Delft Geodetic Computing Centre, 1994
    [5]
    YUAN Y B, OU J K. A generalized trigonometric series function model for determining ionospheric delay[J]. Prog. Nat. Sci., 2004, 14(11):1010-1014
    [6]
    MANNUCCI A J, WILSON B D, YUAN D N, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements[J]. Radio Sci., 1998, 33(3):565-582
    [7]
    HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J. New approaches in global ionospheric determination using ground GPS data[J]. J. Atmos. Sol.: Terr. Phys., 1999, 61(16):1237-1247
    [8]
    LI Zishen, WANG Ningbo, LI Min, et al. Evaluation and analysis of the global ionospheric TEC map in the frame of international GNSS sercice[J]. Chin. J. Geophys., 2017, 60(10):3718-3729(李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10):3718-3729)
    [9]
    SARDON E, RIUS A, ZARRAOA N. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations[J]. Radio Sci., 1994, 29(3):577-586
    [10]
    CHANG Qing, ZHANG Donghe, XIAO zuo, et al. A method for estimation GPS instrumental biases and its application in TEC calculation[J]. Chin. J. Geophys., 2001, 40(5):596-601(常青, 张东和, 萧佐, 等. GPS系统硬件延迟估计方法及其在TEC计算中的应用[J]. 地球物理学报, 2001, 40(5):596-601)
    [11]
    LI Qiang, FENG Man, ZHANG Donghe, et al. Methods of estimation of GPS instrumental bias from single site's GPS data and comparative study of results[J]. J. Peking Univ: Nat. Sci., 2008, 44(1):149-156(李强, 冯曼, 张东和, 等. 基于单站GPS数据的GPS系统硬件延迟估算方法及结果比较[J]. 北京大学学报: 自然科学版, 2008, 44(1):)
    [12]
    WANG Xiaolan, MA Guanyi. Derivation of TEC and GPS hardware delay based on dual-frequency GPS observations[J]. Chin. J. Space Sci., 2014, 34(2):168-179(王晓岚, 马冠一. 基于双频GPS观测的电离层TEC与硬件延迟反演方法[J]. 空间科学学报, 2014, 34(2):168-179)
    [13]
    LI Zishen. Study on the Mitigation of Ionospheric Delay and the Monitoring of Global Ionospheric TEC Based on GNSS/Compass[D]. Beijing: University of Chinese Academy of Sciences, 2012
    [14]
    SU Shu, LIN Aiwen, LIU Qinghua, et al. Application of ordinary Kriging method in spatial interpolation[J]. J. Jiangnan Univ.: Nat. Sci., 2004, 3(1):18-21
    [15]
    ZHU Ruirui, LI Lan, WANG Hao, et al. The spatial variability of precipitation and spatial interpolation methods are compared[J]. Rural Water Conservancy Hydropower China, 2004, 7:25-28(朱芮芮, 李兰, 王浩, 等. 降水量的空间变异性和空间插值方法的比较研究[J]. 中国农村水利水电, 2004, 7:25-28)
    [16]
    STANISLAWSKA I, JUCHNIKOWSKI G, CANDER L R. Kringing method for instantaneous mapping at low and equatorial latitudes[J]. Adv. Space Res., 1996, 18(6):172-176
    [17]
    STANISLAWSKA I, GULYAEVA T, HANBABA R, et al. COST 251 recommended instantaneous mapping model of ionospheric characteristics-PLES[J]. Phys. Chem. Earth, 2000, 25(4):291-294
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(733) PDF Downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return