Volume 41 Issue 3
May  2021
Turn off MathJax
Article Contents
ZHU Jiaxi, LIU Yurong. Temperature Prediction of Satellite Flywheel Based on LightGBM[J]. Chinese Journal of Space Science, 2021, 41(3): 491-498. doi: 10.11728/cjss2021.03.491
Citation: ZHU Jiaxi, LIU Yurong. Temperature Prediction of Satellite Flywheel Based on LightGBM[J]. Chinese Journal of Space Science, 2021, 41(3): 491-498. doi: 10.11728/cjss2021.03.491

Temperature Prediction of Satellite Flywheel Based on LightGBM

doi: 10.11728/cjss2021.03.491 cstr: 32142.14.cjss2021.03.491
  • Received Date: 2019-11-12
  • Rev Recd Date: 2020-06-10
  • Publish Date: 2021-05-15
  • In order to ensure the stable operation of satellites, it is important for the ground system to monitor and predict the satellite state, especially the monitoring of flywheel temperature. As an important component of attitude control system of a satellite, the temperature of flywheel is important to identify the state of the system. The prediction of flywheel temperature is of great significance to the stable operation of satellites in orbit. In this paper, based on the LightGBM machine learning framework, a gradient boosting decision tree model is established by using spatial environmental data and in-orbit telemetry data of a satellite, to predict the temperature change of satellite flywheel. By comparing with the actual flywheel temperature, the prediction accuracy can meet the monitoring requirement of satellite flywheel temperature. This model can be applied to warn the ground system the possible temperature anomalies of attitude control system, so that controllers can avoid risks ahead of time and ensure the safe operation of satellites. The research results have certain universality for other satellite flywheel systems.

     

  • loading
  • [1]
    ZHANG Guoyun, WANG Dapeng. Method of lifetime prolongation for satellite reaction flywheel[J]. Spacecraft Eng., 2019, 28(1):42-47(张国云, 王大鹏. 一种卫星反作用飞轮延寿方法[J]. 航天器工程, 2019, 28(1):42-47)
    [2]
    WANG Hui, Wu Junfeng. Design of reaction flywheel systems for small satellites[J]. Opt. Precision Eng., 2014, 22(2):331-337(王辉, 武俊峰. 小卫星用反作用飞轮系统设计[J]. 光学精密工程, 2014, 22(2):331-337)
    [3]
    XU Fuxiang. An Introduction to Satellite Engineering[M]. Beijing: Astronautic Publishing House, 2003: 341-346(徐福祥. 卫星工程概论[M]. 北京: 宇航出版社, 2003: 341-346)
    [4]
    WANG Chune, FANG Jiancheng. Thermal design method and experimental research of magnetically suspended reaction flywheel[J]. Acta Aeronaut. Astron. Sin., 2011, 32(4):598-607(王春娥, 房建成. 磁悬浮反作用飞轮热设计方法与实验研究[J]. 航空学报, 2011, 32(4):598-607)
    [5]
    ZHU Xi, GUO Gan. Particle swarm optimization algorithm of spacecraft thermal balance test temperature prediction[J]. J. Astronaut., 2016, 37(11):1378-1383(朱熙, 郭赣. 航天器热平衡温度预测的粒子群算法[J]. 宇航学报, 2016, 37(11):1378-1383)
    [6]
    ZHANG Xudong, LI Yunze. Temperature prediction for nano satellite on orbit based on BP neural network[J]. J. Beijing Univ. Aeronaut. Astron., 2008, 34(12):1423-1427(张旭东, 李运泽. 基于BP神经网络的纳卫星轨道温度预测[J]. 北京: 北京航空航天大学学报, 2008, 34(12):1423-1427)
    [7]
    XU Fangzhou, SONG Xianfeng. A time series prediction model of Ionosphere Ion Temperature(Ti) based on DEMETER satellite dataset[J]. Remote Sens. Inform., 2012, 2:25-30(徐方舟, 宋现锋. 基于DEMETER卫星观测数据的电离层离子温度时间序列预测模型[J]. 遥感信息, 2012, 2:25-30)
    [8]
    BULUT M, SOZBIR N. Prediction of the solar array temperatures of geostationary earth orbit satellite by using analytical methods[C]//9th International Conference on Recent Advances in Space Technologies. New York: IEEE, 2019:369-372
    [9]
    GARZÓN A, VILLANUEVA Y A. Thermal analysis of satellite Libertad 2: a guide to CubeSat temperature prediction[J]. J. Aeros. Technol. Manag., 2018, 10:4918-4926
    [10]
    LIU Yongwei, MENG Lingxin. The application of Nair verification method in valuation practice[J]. Appraisal J. China, 2005, 11:156-163(刘永伟, 孟灵新. 奈尔检验法在评估中的应用[J]. 中国资产评估, 2005, 11:156-163)
    [11]
    FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. Ann. Statist., 2001, 29(5): 1189-1232
    [12]
    ZHENG Kaiwen, YANG Chao. Research on short-term load prediction based on gradient boosting decision tree[J]. Guizhou Electr. Power Technol., 2017, 20(2):82-90(郑凯文, 杨超. 基于迭代决策树短期负荷预测研究[J]. 贵州电力技术, 2017, 20(2):82-90)
    [13]
    HAN Qidi, ZHANG Xiaotong. Lithology identification technology based on gradient boosting decision tree algorithm[J]. Bull. Mineral. Petrol. Geochem., 2018, 37(6):1173-1180(韩启迪, 张小桐. 基于梯度提升决策树算法的岩性识别技术[J]. 矿物岩石地球化学通报, 2018, 37(6):1173-1180)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(896) PDF Downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return