Volume 41 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
YIN Mengting, ZOU Ziming, ZHONG Jia. A Prediction Model of the Grid Point Ionospheric TEC[J]. Chinese Journal of Space Science, 2021, 41(4): 568-579. doi: 10.11728/cjss2021.04.568
Citation: YIN Mengting, ZOU Ziming, ZHONG Jia. A Prediction Model of the Grid Point Ionospheric TEC[J]. Chinese Journal of Space Science, 2021, 41(4): 568-579. doi: 10.11728/cjss2021.04.568

A Prediction Model of the Grid Point Ionospheric TEC

doi: 10.11728/cjss2021.04.568 cstr: 32142.14.cjss2021.04.568
  • Received Date: 2020-02-17
  • Rev Recd Date: 2020-12-24
  • Publish Date: 2021-07-15
  • A high-precision ionospheric TEC grid point prediction model is established using Gate Recurrent Unit (GRU) neural network model suitable for analyzing time series data. Ionospheric TEC grid point historical data, solar activity index, and geomagnetic activity index are used as inputs of our model. After our in-depth research and analysis, the data of 60 grid points were employed to predict model and do comparative experiments, and the results show that the mean value of average relative accuracy of the northern hemisphere is 83.96%, higher than 73.60% of the southern hemisphere. It presents that the adaptability of the prediction model is better in the northern hemisphere, and especially in the middle and low latitudes rather than in the high latitudes. The second result is that the mean value of the average relative accuracy of the prediction model in magnetic disturbance period is about higher 1.95% higher than that in magnetic quiet period. Finally, we compared the prediction results of several representative models. Compared with the single station prediction model based on RNN, LSTM and Bi-LSTM, the RMSE of this prediction model is reduced to 80.8% on average.

     

  • loading
  • [1]
    RADICELLA S M, LEITINGER R, BELEHAKI A, et al. Total electron content-A key parameter in propagation:measurement and use in ionospheric imaging[J]. Ann. Geophys., 2004, 47(2/3):1067-1091
    [2]
    ZHANG Lu. Based on the Time Series, Neural Network, Grey and Combination Forecasting of Ionospheric TEC Forecast Research[D]. Nanjing:Nanjing University of Information Science and Technology, 2012(张禄. 基于时间序列、神经网络、灰色和组合预测对电离层TEC的预测研究[D]. 南京:南京信息工程大学, 2012)
    [3]
    WU Wenjun. Study of Ionosphere TEC Prediction Models[D]. Beijing:Graduates School of Chinese Academy of Sciences, 2008(武文俊. 电离层TEC预报模型的研究[D]. 北京:中国科学院研究生院, 2008)
    [4]
    KLOBUCHAR J A. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE Trans. Aerosp. Electron. Syst., 1987, 23(3):325-331
    [5]
    DAI Chunli, PING Jinsong. Modeling and prediction of TEC in China region for satellite navigation[C]//2009 15th Asia-Pacific Conference on Communications. Shanghai:IEEE, 2009:310-313
    [6]
    LI Zhigang, CHENG Zongyi, TENG Chugang, et al. A study of prediction models for ionosphere[J]. Chin. J. Geophys., 2007, 50(2):327-337
    [7]
    BILITZA D. International reference ionosphere (1990)[J]. Planet. Space Sci., 1992, 40(4):544
    [8]
    LI Xiuhai, GUO Dazhi. Modeling and prediction of ionospheric total electron content by time series analysis[C]//20102nd International Conference on Advanced Computer Control. Shenyang:IEEE, 2010:375-379
    [9]
    CHEN Peng, YAO Yibin WU Han. TEC prediction of ionosphere based on time series analysis[J]. Geomat. Inform. Sci. Wuhan Univ., 2011, 36(3):267-270(陈鹏, 姚宜斌, 吴寒. 利用时间序列分析预报电离层TEC[J]. 武汉大学学报信息科学版, 2011, 36(3):267-270)
    [10]
    HUANG Zhi, YUAN Hong. Ionospheric single-station TEC short-term forecast using RBF neural network[J]. Radio Sci., 2014, 49(4):283-292
    [11]
    ELMUNIM N A, ABDULLAH M, HASBI A M. Improving ionospheric forecasting using statistical method for accurate GPS positioning over Malaysia[C]//2016 International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES). Putrajaya:IEEE, 2016:352-355
    [12]
    YUAN Tianjiao, CHEN Yanhong, LIU Siqing, et al. Prediction model for ionospheric total electron content based on deep learning recurrent neural network[J]. Chin. J. Space Sci., 2018, 38(1):48-57
    [13]
    SUN Wenqing, XU Long, HUANG Xin, et al. Forecasting of ionospheric vertical total electron content (TEC) using LSTM networks[C]//2017 International Conference on Machine Learning and Cybernetics (ICMLC). Ningbo:IEEE, 2017:340-344
    [14]
    YAN Yihua, HUANG Xin, ZHANG Weiqiang, et al. Bidirectional LSTM for ionospheric vertical Total Electron Content (TEC) forecasting[C]//2017 IEEE Visual Communications and Image Processing (VCIP). Shenzhen:IEEE, 2017:1-4
    [15]
    SONG Rui, ZHANG Xuemin, CHEN Zhou, et al. Predicting TEC in China based on the neural networks optimized by genetic algorithm[J]. Adv. Space Res., 2018, 62(4):745-759
    [16]
    MUKESH R, SOMA P, KARTHIKEYAN V, et al. Prediction of ionospheric vertical total electron content from GPS data using ordinary Kriging-based surrogate model[J]. Astrophys. Space Sci., 2019, 364(1):15
    [17]
    HOCHREITER S, SCHMIDHUBER, JURGEN. Long Short-Term memory[J]. Neural Comput., 1997, 9(8):1735-1780
    [18]
    , arXiv preprint arXiv:1412.3555, 2014
    [19]
    CLEVERT, DJORK-ARNE, UNTERTHINER T, et al. Fast and accurate deep network learning by Exponential Linear Units (ELUs)[J]. Comput. Sci., 2015, arXiv preprint arXiv:1511.07289, 2015
    [20]
    KINGMA D, BA J. Adam:A method for stochastic optimization[J]. Comput. Sci., 2014, ():
    [21]
    HAN Jide, WANG Zushun, WANG Chunqing. Analysis of temporal and spatial change in global ionosphere[J]. J. Geomat., 2012, 37(6):26-29(韩吉德, 王祖顺, 王春青. 全球电离层时空变化特性分析[J]. 测绘地理信息, 2012, 37(6):26-29)
    [22]
    LIU Kang, WANG Feng, ZHAI Xu. Statistical analysis and global trend analysis of ionospheric TEC data[J]. Bull. Surv. Mapp., 2013, 1:29-32(刘康, 王枫, 翟旭. 全球电离层TEC数据统计分析与全局趋势分析[J]. 测绘通报, 2013, 1:29-32)
    [23]
    TU Jiannan, WAN Weixing, NING Baiqi, et al. Distribution of impulsive electric field in the near earth plasma sheet during storm and non-storm time[J]. Chin. J. Space Sci., 2001, 1:9-16(涂剑南, 万卫星, 宁百齐, 等. 磁扰动和磁静时近地等离子体片中脉冲电场的分布[J]. 空间科学学报, 2001, 1:9-16)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(821) PDF Downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return