Volume 41 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
WANG Wenyu, WANG Zhenzhan, DUAN Yongqiang. Simulation of the Middle and Upper Atmospheric Wind Measurement of THz Atmospheric Limb Sounder[J]. Chinese Journal of Space Science, 2021, 41(4): 589-596. doi: 10.11728/cjss2021.04.589
Citation: WANG Wenyu, WANG Zhenzhan, DUAN Yongqiang. Simulation of the Middle and Upper Atmospheric Wind Measurement of THz Atmospheric Limb Sounder[J]. Chinese Journal of Space Science, 2021, 41(4): 589-596. doi: 10.11728/cjss2021.04.589

Simulation of the Middle and Upper Atmospheric Wind Measurement of THz Atmospheric Limb Sounder

doi: 10.11728/cjss2021.04.589 cstr: 32142.14.cjss2021.04.589
  • Received Date: 2020-01-09
  • Rev Recd Date: 2020-09-27
  • Publish Date: 2021-07-15
  • Middle and upper atmospheric wind is a key parameter in atmospheric science. Ground-based radar, lidar, and interferometer are usually used to measure the atmospheric wind. Up to now, the payload which can measure the atmospheric wind from space is quite scarce. Microwave limb sounding can also measure wind in the middle and upper atmosphere. THz Atmospheric Limb Sounder (TALIS) is the first Chinese microwave limb sounder being developed for atmospheric vertical profile observation. The main targets of TALIS are atmospheric vertical profiles of temperature, pressure and chemical species such as H2O, O3, HCl, ClO, N2O, HNO3. Since TALIS covers many strong lines, the observation data will contain doppler information of atmospheric wind, so it can be used to retrieve the atmospheric wind. In this paper, a simulation is performed to evaluate the precision of wind retrieval by using the Atmospheric Radiative Transfer Simulator (ARTS). The results suggest that 118GHz retrieval has a better precision of 12m·s-1 at 70km. The precision of 183GHz, 633GHz and 658GHz are 19m·s-1 (60km), 19m·s-1 (50km), 16m·s-1 (50km), respectively. 655GHz is a candidate band that has a large potential for wind measurement in the stratosphere and its precision is 11m·s-1 at 55km. The simulation also shows that reducing the spectral resolution to improve the NEDT has almost no contribution to a better retrieval precision. Reducing the system noise temperature is the only way to improve the precision.

     

  • loading
  • [1]
    WANG Yongmei, FU Liping, DU Shusong, et al. Development for detecting upper atmospheric wind and temperature from satellite[J]. Chin. J. Space Sci., 2009, 29(1):1-5(王咏梅, 付利平, 杜述松, 等. 中高层大气风场和温度场星载探测技术研究进展[J]. 空间科学学报, 2009, 29(1):1-5)
    [2]
    WANG Houmao, WANG Yongmei, FU Jianguo, et al. A new ground-based Fabry-Perot interferometer for measurement of the thermospheric wind[J]. Chin. J. Space Sci., 2016, 36(3):352-357(王后茂, 王咏梅, 付建国, 等. 一种用于测量高层大气风场的新型地基Fabry-Perot干涉仪[J]. 空间科学学报, 2016, 36(3):352-357)
    [3]
    WANG Houmao, WANG Yongmei, FU Yingjian, et al. Wind retrieval and error analysis of ground-based Fabry-Perot interferometer for the middle and upper atmosphere[J]. Chin. J. Space Sci., 2014, 34(4):415-425(王后茂, 王咏梅, 付建国, 等. 地基Fabry-Perot中高层大气风速反演及误差分析[J]. 空间科学学报, 2014, 34(4):415-425)
    [4]
    YUAN Wei, XU Jiyao, MA Ruiping, et al. First observation of mesospheric and thermospheric winds by a Fabry-Perot interferometer in China[J]. Chin. Sci. Bull., 2010, 55(35):4046-4051(袁伟, 徐寄遥, 马瑞平, 等. 我国光学干涉仪对中高层大气风场的首次观测[J]. 科学通报, 2010, 55(35):4046-4051)
    [5]
    GRASSL H J, SKINNER W R, HAYS P B, et al. Atmospheric wind measurements with the high-resolution Doppler imager[J]. J. Spacecr. Rockets., 1995, 32(1):169-176
    [6]
    HAYS P B, TEAM H S. Remote sensing of mesospheric winds with the high-resolution doppler imager[J]. Planet. Space Sci., 1992, 40(12):1599-1606
    [7]
    SHEPHERD G G, THUILLIER G, GAULT W A, et al. WINDSⅡ, the wind imaging interferometer on the upper atmosphere research satellite[J]. J. Geophys. Res., 1993, 98(10):10725-10750
    [8]
    ISHⅡ S, BARON P, AOKI M, et al. Feasibility study for future space-borne coherent doppler wind lidar, part 1:instrumental overview for global wind profile observation[J]. J. Meteorol. Soc. Jpn., 2017, 95(5):301-317
    [9]
    BAUMGARTEN G. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80km[J]. Atmos. Meas. Tech., 2010, 3(6):1509-1518
    [10]
    ORTLAND D A, SKINNER W R, HAYS P B, et al. Measurements of stratospheric winds by the high resolution Doppler imager[J]. J. Geophys. Res., 1996, 101(D6):10351-10363
    [11]
    SHEPHERD G G. Development of wind measurement systems for future space missions[J]. Acta Astronaut., 2015, 115(5):206-217
    [12]
    FU Jia, WANG Zhenzhan. Simulation of microwave and sub-millimeter wave radiation from 1 to 3000GHz of planetary atmosphere[J]. Chin. J. Space Sci., 2017, 37(2):192-201(付佳, 王振占. 行星大气1~3000GHz微波-亚毫米波辐射模拟[J]. 空间科学学报, 2017, 37(2):192-201)
    [13]
    WATERS J W, FROIDEVAUX L, HARWOOD R S, et al. The Earth Observing System Microwave Limb Sounder (EOS MLS) on the aura satellite[J]. IEEE T. Geosci. Remote, 2006, 44(5):1075-1092
    [14]
    WU D L, SCHWARTZ M J, WATERS J W, et al. Mesospheric doppler wind measurements from aura Microwave Limb Sounder (MLS)[J]. Adv. Space Res., 2008, 42(7):1246-1252
    [15]
    KIKUCHI K, NISHIBORI T, OCHIAI S, et al. Overview and early results of the superconducting Submillimeter-wave Limb-Emission Sounder (SMILES)[J]. J. Geophys. Res., 2010, 115:D23306
    [16]
    BARON P, MURTAGH D P, URBAN J, et al. Observation of horizontal winds in the middle-atmosphere between 30°S and 55°N during the northern winter 2009-2010[J]. Atmos. Chem. Phys., 2013, 13(12):6049-6064
    [17]
    BARON P, MURTAGH D P, ERIKSSON P, et al. Simulation study for the Stratospheric Inferred Winds (SIW) sub-millimeter limb sounder[J]. Atmos. Meas. Tech., 2018, 11:4545-4566
    [18]
    OCHIAI S, BARON P, NISHIBORI T, et al. SMILES-2 mission for temperature, wind, and composition in the whole atmosphere[J]. Sci. Online Lett. Atmos., 2017, 13(A):13-18
    [19]
    BARON P, OCHIAI S, DUPUY E, et al. Potential for the measurement of MLT wind, temperature, density and geomagnetic field with superconducting Submillimeter-wave Limb-Emission Sounder-2(SMILES-2)[J]. Atmos. Meas. Tech., 2020, 13(1):219-237
    [20]
    WANG Wengyu, WANG Zhenzhan, DUAN Yongqiang. Performance evaluation of THz Atmospheric Limb Sounder (TALIS) of China[J]. Atmos. Meas. Tech., 2020, 13(1):13-38
    [21]
    RODGERS C D. Inverse Methods for Atmospheric Sounding:Theory and Practice[M]. Singapore:World Scientific, 2000
    [22]
    ERIKSSON P, BUEHLER S A, DAVIS C P, et al. ARTS, the atmospheric radiative transfer simulator, version 2[J]. J. Quant. Spectrosc. Ra., 2011, 112:1551-1558
    [23]
    ERIKSSON P, JIMENEZ C, BUEHLER S A. Qpack, a general tool for instrument simulation and retrieval work[J]. J. Quant. Spectrosc. Ra., 2005, 91:47-64
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1044) PDF Downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return