Citation: | TONG Xin, ZOU Ziming, BAI Xi, ZHONG Jia, HU Zejun, LI Bin. Machine Identification of Throat Aurora[J]. Chinese Journal of Space Science, 2021, 41(4): 654-666. doi: 10.11728/cjss2021.04.654 |
[1] |
PARKER E N. Auroral phenomena[J]. Proc. IRE, 1959, 47(2):239-244
|
[2] |
XING Zanyang. Observational Characteristics of Dayside Poleward Moving Auroral Forms and its Generation Mechanisms[D]. Xi'an:Xidian University, 2013(邢赞扬. 日侧极向运动极光结构的观测特征及其产生机制研究[D]. 西安:西安电子科技大学, 2013)
|
[3] |
HU Zejun, YANG Huigen, AI Yong. Multiple wavelengths observation of dayside auroras in visible range-A preliminary result of the first wintering aurora observation in Chinese arctic station at Ny-Alesund[J]. Chin. J. Polar Res., 2005, 17(2):107-114(胡泽骏, 杨惠根, 艾勇. 日侧极光卵的可见光多波段观测特征-中国北极黄河站首次极光观测初步分析[J]. 极地研究, 2005, 17(2):107-114)
|
[4] |
FRE Y, HARALD U. Localized aurora beyond the auroral oval[J]. Rev. Geophys., 2007, 45(1):R-G1003
|
[5] |
HAN Desheng, HU Zejun, CHEN Xiangcai. Recent results obtained from dayside optical auroral observations at Yellow River Station[J]. Chin. J. Polar Res., 2018, 3(3):235-250(韩德胜, 胡泽骏, 陈相材. 基于北极黄河站观测的日侧极光研究新进展[J]. 极地研究, 2018, 3(3):235-250)
|
[6] |
SYRJÄ SUO M T, DONOVAN E F. Diurnal auroral occurrence statistics obtained via machine vision[J]. Ann. Geophys. Eur. Geophys. Soc., 2004, 22(4):1103-1113
|
[7] |
HU Z J, YANG H, HUANG D, et al. Synoptic distribution of dayside aurora:multiple-wavelength all-sky observation at Yellow River Station in Ny-Ålesund, Svalbard[J]. J. Atmos. Sol.:Terr. Phys., 2009, 71(8/9):794-804
|
[8] |
HAN Bing, YANG Chen, GAO Xinbo. Aurora image classification based on LDA combining with saliency information[J]. J. Software, 2013, 24(11):2758-2766(韩冰, 杨辰, 高新波. 融合显著信息的极光图像分类[J]. 软件学报, 2013, 24(11):2758-2766)
|
[9] |
HAN B, ZHAO X, TAO D, et al. Dayside aurora classification via BIFs-based sparse representation using manifold learning[J]. Int. J. Comput. Math., 2014, 91(11):2415-2426
|
[10] |
ZHONG Y, HUANG R, ZHAO J, et al. Aurora image classification based on multi-feature latent Dirichlet allocation[J]. Remote Sens., 2018, 10(2):233
|
[11] |
LI Y, JIANG N. An aurora image classification method based on compressive sensing and distributed WKNN[C]//Computer Software and Applications Conference (COMPSAC). Tokyo:IEEE, 2018:347-354
|
[12] |
CLAUSEN L B N, NICKISCH H. Automatic classification of auroral images from the Oslo Auroral THEMIS (OATH) data set using machine learning[J]. J. Geophys. Res.:Space Phys., 2018, 123(7):5640-5647
|
[13] |
YANG Q, TAO D, HAN D, et al. Extracting auroral key local structures from all-sky auroral images by artificial intelligence technique[J]. J. Geophys. Res.:Space Phys., 2019, 124(5):3512-3521
|
[14] |
HAN D S, CHEN X C, LIU J J, et al. An extensive survey of dayside diffuse aurora based on optical observations at Yellow River Station[J]. J. Geophys. Res.:Space Phys., 2015, 120(9):7447-7465
|
[15] |
HAN D S, NISHIMURA Y, LYONS L R, et al. Throat aurora:the ionospheric signature of magnetosheath particles penetrating into the magnetosphere[J]. Geophys. Res. Lett., 2016, 43(5):1819-1827
|
[16] |
HAN D S, LIU J J, CHEN X C, et al. Direct evidence for throat aurora being the ionospheric signature of magnetopause transient and reflecting localized magnetopause indentations[J]. J. Geophys. Res.:Space Phys., 2018, 123(4):2658-2667
|
[17] |
HAN D S, HIETALA H, CHEN X C, et al. Observational properties of dayside throat aurora and implications on the possible generation mechanisms[J]. J. Geophys. Res.:Space Phys., 2017, 122(2):1853-1870
|
[18] |
CHEN X C, HAN D S, LORENTZEN D A, et al. Dynamic properties of throat aurora revealed by simultaneous ground and satellite observations[J]. J. Geophys. Res.:Space Phys., 2017, 122(3):3469-3486
|
[19] |
Polar Research Institute of China, High Altitude Atmospheric and Space Physics Team, 630.0nm all-sky aurora image at China's Arctic Yellow River Station[DB/OL]. 2020, National Arctic and Antarctic Data Center. DOI:10.11856/NNS.D.2020.001.v0(中国极地研究中心高空大气与空间物理团队, 中国北极黄河站630.0nm全天空极光图像[DB/OL]. 2020, 国家极地科学数据中心. DOI:10.11856/NNS.D.2020.001.v0)
|
[20] |
WANG Qian. Image Classification and Dynamic Process Analysis for Dayside Aurora on All-sky Image[D]. Xi'an:Xidian University, 2011(王倩. 日侧全天空极光图像分类及动态过程分析方法研究[D]. 西安:西安电子科技大学, 2011)
|
[21] |
TONG Xin, ZOU Ziming, ZHONG Jia, et al. Labeled throat aurora image dataset of ASI at Yellow River Station.V1[DB/OL]. NSSDC Space Science Article Data Repository. http://hdl.pid21.cn/21.86116.7/01.99.00027(佟欣, 邹自明, 钟佳, 等. 黄河站ASI喉区极光识别标注数据集.V1[DB/OL]. NSSDC Space Science Article Data Repository. http://hdl.pid21.cn/21.86116.7/01.99.00027)
|
[22] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[R]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:4700-4708
|
[23] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444
|
[24] |
DENG J, DONG W, SOCHER R, et al. Imagenet:a large-scale hierarchical image database[J]. Proc. IEEE Comput. Vision Pattern Recog., 2009, 2:248-255
|
[25] |
FU R, GAO X, JIAN Y. Patchy aurora image segmentation based on ALBP and block threshold[C]//International Conference on Pattern Recognition. Istanbul:IEEE, 2010:3380-3383
|