Volume 41 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
WANG Zihan, TONG Jizhou, ZOU Ziming, ZHONG Jia, BAI Xi. Auroral Oval Morphology Extraction Based on U-net from Ultraviolet Aurora Observation[J]. Chinese Journal of Space Science, 2021, 41(4): 667-675. doi: 10.11728/cjss2021.04.667
Citation: WANG Zihan, TONG Jizhou, ZOU Ziming, ZHONG Jia, BAI Xi. Auroral Oval Morphology Extraction Based on U-net from Ultraviolet Aurora Observation[J]. Chinese Journal of Space Science, 2021, 41(4): 667-675. doi: 10.11728/cjss2021.04.667

Auroral Oval Morphology Extraction Based on U-net from Ultraviolet Aurora Observation

doi: 10.11728/cjss2021.04.667 cstr: 32142.14.cjss2021.04.667
  • Received Date: 2020-02-11
  • Rev Recd Date: 2020-12-27
  • Publish Date: 2021-07-15
  • Auroral oval morphology extraction plays an important role in the aurora research. How to improve the accuracy of auroral oval morphology extraction in ultraviolet aurora images with strong interference background is still an incomplete problem. In this paper, a method based on deep learning semantic segmentation model U-net is proposed. U-net model with residual block is used to extract auroral oval morphology with high accuracy. The experimental results on Polar satellite ultraviolet aurora images show that this method can get higher accuracy compared with the existing algorithms, and can obtain more detailed extraction results for both full auroral oval and gap auroral oval images. This method shows its advantages especially for aurora images with strong dayglow interference, uneven grayscale and low contrast. At the same time, the applicability and effectiveness of supervised deep learning method on auroral oval morphology extraction have been proved.

     

  • loading
  • [1]
    AKASOFU S I. The latitudinal shift of the auroral belt[J]. J. Atmos. Terr. Phys., 1964, 26(12):1167-1174
    [2]
    GERMANY G A, PARKS G K, RANGANATH H, et al. Analysis of auroral morphology:substorm precursor and onset on January 10, 1997[J]. Geophys. Res. Lett., 1998, 25(15):3043-3046
    [3]
    MILAN S E, LESTER M, COWLEY S W H, et al. Variations in the polar cap area during two substorm cycles[J]. Ann. Geophys., 2003, 21(5):1121-1140
    [4]
    MILAN S E, BOAKES P D, HUBERT B. Response of the expanding/contracting polar cap to weak and strong solar wind driving:Implications for substorm onset[J]. J. Geophys. Res.:Space Phys., 2008, 113(A9). DOI: 10.1029/2008JA013340
    [5]
    HUNG C C, GERMANY G. K-means and iterative selection algorithms in image segmentation[R]. IEEE Southeastcon, 2003
    [6]
    LI X, RAMACHANDRAN R, HE M, et al. Comparing different thresholding algorithms for segmenting auroras[C]//International Conference on Information Technology:Coding and Computing. Proceedings. ITCC 2004. Las Vegas:IEEE, 2004:594-601
    [7]
    SHI J, WU J, ANISETTI M, et al. An interval type-2 fuzzy active contour model for auroral oval segmentation[J]. Soft Comput., 2017, 21(9):2325-2345
    [8]
    CAO C, NEWMAN T S, GERMANY G A. New shape-based auroral oval segmentation driven by LLS-RHT[J]. Pattern Recogn., 2009, 42(5):607-618
    [9]
    YANG X, GAO X, LI J, et al. A shape-initialized and intensity-adaptive level set method for auroral oval segmentation[J]. Inform. Sci., 2014, 277:794-807
    [10]
    LIU H, GAO X, HAN B, et al. An automatic MSRM method with a feedback based on shape information for auroral oval segmentation[C]//International Conference on Intelligent Science and Big Data Engineering. Heidelberg:Springer, 2013:748-755
    [11]
    WANG Qian, MENG Qinghu, HU Zejun, et al. Extraction of auroral oval boundaries from UVI images:a new FLICM clustering-based method and its evaluation[J]. Adv. Polar Sci., 2011, 22(3):184-191
    [12]
    DING G X, HE F, ZHANG X X, et al. A new auroral boundary determination algorithm based on observations from TIMED/GUVI and DMSP/SSUSI[J]. J. Geophys. Res.:Space Phys., 2017, 122(2):2162-2173
    [13]
    YANG P, ZHOU Z, SHI H, et al. Auroral oval segmentation using dual level set based on local information[J]. Remote Sens. Lett., 2017, 8(12):1112-1121
    [14]
    GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A review on deep learning techniques applied to semantic segmentation[R]. arXiv preprint arXiv:1704. 06857, 2017
    [15]
    RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich:Springer, 2015:234-241
    [16]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:770-778
    [17]
    DROZDZAL M, VORONTSOV E, CHARTRAND G, et al. The Importance of Skip Connections in Biomedical Image Segmentation[M]//Deep Learning and Data Labeling for Medical Applications. Athens:Springer, 2016:179-187
    [18]
    WANG Zihan, TONG Jizhou, ZOU Ziming, et al. "Auroral oval morphology extraction based on U-net from ultraviolet aurora observation" paper data. V1[DS]. NSSDC Space Science Article Data Repository. 21.86116. 7/01.99.00035
    [19]
    SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. J. Mach. Learn. Res., 2014, 15(1):1929-1958
    [20]
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Trans. Syst. Man Cybern., 1979, 9(1):62-66
    [21]
    KRINIDIS S, CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Trans. Image Process., 2010, 19(5):1328-1337
    [22]
    RAJENDRAN A, DHANASEKARAN R. Fuzzy clustering and deformable model for tumor segmentation on MRI brain image:a combined approach[J]. Proced. Eng., 2012, 30:327-333
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(846) PDF Downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return