Citation: | WANG Zihan, TONG Jizhou, ZOU Ziming, ZHONG Jia, BAI Xi. Auroral Oval Morphology Extraction Based on U-net from Ultraviolet Aurora Observation[J]. Chinese Journal of Space Science, 2021, 41(4): 667-675. doi: 10.11728/cjss2021.04.667 |
[1] |
AKASOFU S I. The latitudinal shift of the auroral belt[J]. J. Atmos. Terr. Phys., 1964, 26(12):1167-1174
|
[2] |
GERMANY G A, PARKS G K, RANGANATH H, et al. Analysis of auroral morphology:substorm precursor and onset on January 10, 1997[J]. Geophys. Res. Lett., 1998, 25(15):3043-3046
|
[3] |
MILAN S E, LESTER M, COWLEY S W H, et al. Variations in the polar cap area during two substorm cycles[J]. Ann. Geophys., 2003, 21(5):1121-1140
|
[4] |
MILAN S E, BOAKES P D, HUBERT B. Response of the expanding/contracting polar cap to weak and strong solar wind driving:Implications for substorm onset[J]. J. Geophys. Res.:Space Phys., 2008, 113(A9). DOI: 10.1029/2008JA013340
|
[5] |
HUNG C C, GERMANY G. K-means and iterative selection algorithms in image segmentation[R]. IEEE Southeastcon, 2003
|
[6] |
LI X, RAMACHANDRAN R, HE M, et al. Comparing different thresholding algorithms for segmenting auroras[C]//International Conference on Information Technology:Coding and Computing. Proceedings. ITCC 2004. Las Vegas:IEEE, 2004:594-601
|
[7] |
SHI J, WU J, ANISETTI M, et al. An interval type-2 fuzzy active contour model for auroral oval segmentation[J]. Soft Comput., 2017, 21(9):2325-2345
|
[8] |
CAO C, NEWMAN T S, GERMANY G A. New shape-based auroral oval segmentation driven by LLS-RHT[J]. Pattern Recogn., 2009, 42(5):607-618
|
[9] |
YANG X, GAO X, LI J, et al. A shape-initialized and intensity-adaptive level set method for auroral oval segmentation[J]. Inform. Sci., 2014, 277:794-807
|
[10] |
LIU H, GAO X, HAN B, et al. An automatic MSRM method with a feedback based on shape information for auroral oval segmentation[C]//International Conference on Intelligent Science and Big Data Engineering. Heidelberg:Springer, 2013:748-755
|
[11] |
WANG Qian, MENG Qinghu, HU Zejun, et al. Extraction of auroral oval boundaries from UVI images:a new FLICM clustering-based method and its evaluation[J]. Adv. Polar Sci., 2011, 22(3):184-191
|
[12] |
DING G X, HE F, ZHANG X X, et al. A new auroral boundary determination algorithm based on observations from TIMED/GUVI and DMSP/SSUSI[J]. J. Geophys. Res.:Space Phys., 2017, 122(2):2162-2173
|
[13] |
YANG P, ZHOU Z, SHI H, et al. Auroral oval segmentation using dual level set based on local information[J]. Remote Sens. Lett., 2017, 8(12):1112-1121
|
[14] |
GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A review on deep learning techniques applied to semantic segmentation[R]. arXiv preprint arXiv:1704. 06857, 2017
|
[15] |
RONNEBERGER O, FISCHER P, BROX T. U-net:Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich:Springer, 2015:234-241
|
[16] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:770-778
|
[17] |
DROZDZAL M, VORONTSOV E, CHARTRAND G, et al. The Importance of Skip Connections in Biomedical Image Segmentation[M]//Deep Learning and Data Labeling for Medical Applications. Athens:Springer, 2016:179-187
|
[18] |
WANG Zihan, TONG Jizhou, ZOU Ziming, et al. "Auroral oval morphology extraction based on U-net from ultraviolet aurora observation" paper data. V1[DS]. NSSDC Space Science Article Data Repository. 21.86116. 7/01.99.00035
|
[19] |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. J. Mach. Learn. Res., 2014, 15(1):1929-1958
|
[20] |
OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Trans. Syst. Man Cybern., 1979, 9(1):62-66
|
[21] |
KRINIDIS S, CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Trans. Image Process., 2010, 19(5):1328-1337
|
[22] |
RAJENDRAN A, DHANASEKARAN R. Fuzzy clustering and deformable model for tumor segmentation on MRI brain image:a combined approach[J]. Proced. Eng., 2012, 30:327-333
|