Volume 41 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
CHU Wei, QIN Gang, XU Song, HUANG Jianping, ZEREN Zhima, SHEN Xuhui. Study on the Position Diffusion Coefficients of Fokker Planck Equation of Magnetosphere Energetic Particle[J]. Chinese Journal of Space Science, 2021, 41(5): 715-723. doi: 10.11728/cjss2021.05.715
Citation: CHU Wei, QIN Gang, XU Song, HUANG Jianping, ZEREN Zhima, SHEN Xuhui. Study on the Position Diffusion Coefficients of Fokker Planck Equation of Magnetosphere Energetic Particle[J]. Chinese Journal of Space Science, 2021, 41(5): 715-723. doi: 10.11728/cjss2021.05.715

Study on the Position Diffusion Coefficients of Fokker Planck Equation of Magnetosphere Energetic Particle

doi: 10.11728/cjss2021.05.715 cstr: 32142.14.cjss2021.05.715
  • Received Date: 2020-07-21
  • Rev Recd Date: 2021-05-20
  • Publish Date: 2021-09-15
  • In this paper, the quasi-linear theory is used to calculate the diffusion coefficients of the Fokker Planck equation of energetic particles in the observable phase space, and the comparison with the adiabatic invariant radial diffusion coefficients is carried out. The main findings are as follows. The diffusion coefficients of the position items will increase rapidly with the radial distance. Under the same radial distance, the diffusion coefficient of the position items in the high latitude will be smaller than that in the low latitude. Compared with the radial diffusion coefficient, it is found that the two have the same magnitude, but the relative size of the two needs to be analyzed according to the specific disturbance form. This study will use the test particles to simulate the motion of energetic particles in the magnetosphere, especially the guidance center theory, and use the Monte Carlo method of stochastic partial differential to solve the Fokker Planck equation of the motion of energetic particles in the magnetosphere.

     

  • loading
  • [1]
    BAKER D N. What is space weather[J]. Adv. Space Res., 1998, 22(1):7-16
    [2]
    BAKER D N. The occurrence of operational anomalies in spacecraft and their relationship to space weather[J]. IEEE Trans. Plasma Sci., 2000, 28(6):2007-2016
    [3]
    BAKER D N. Space science:how to cope with space weather[J]. Science, 2002, 297(5586):1486-1487
    [4]
    CAO Jinbin, LI Lei, WU Ji. Introduction to Space Physics[M]. Beijing:Science Press, 2001(曹晋滨, 李磊, 吴季. 太空物理学导论[M]. 北京:科学出版社, 2001)
    [5]
    VAINIO R, DESORGHER L, HEYNDERICKX D, et al. Dynamics of the Earth's particle radiation environment[J]. Space Sci. Rev., 2009, 147(3/4):187-231
    [6]
    UKHORSKIY A Y, SITNOV M I. Dynamics of radiation belt particles[J]. Space Sci. Rev., 2013, 179(1/2/3/4):545-578
    [7]
    SCHULZ M, LANZEROTTI L J. Particle Diffusion in the Radiation Belts[M]. Heidelberg:Springer, 1974
    [8]
    SHPRITS Y Y, THORNE R M, HORNE R B, et al. Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm[J]. Geophys. Res. Lett., 2016, 33 (L05104).DOI: 10.1029/2005GL024256
    [9]
    HORNE R B, THORNE R M. Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms[J]. Geophys. Res. Lett., 1998, 25(15):3011-3014
    [10]
    SUMMERS D, THORNE R M, XIAO F. Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere[J]. J. Geophys. Res. Space Phys., 1998, 103(A9):20487-20500
    [11]
    ALBERT J M. Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma[J]. J. Geophys. Res.:Space Phys., 2003, 108(A6):1249
    [12]
    HORNE R B, THORNE R M, SHPRITS Y Y, et al. Wave acceleration of electrons in the Van Allen radiation belts[J]. Nature, 2005, 437(7056):227-230
    [13]
    NORTHROP T G, TELLER E. Stability of the adiabatic motion of charged particles in the Earth's field[J]. Phys. Rev., 1960, 117(1):215-225
    [14]
    NORTHROP T G. The guiding center approximation to charged particle motion[J]. Ann. Phys., 1961, 15(1):79-101
    [15]
    NORTHROP T G. The Adiabatic Motion of Charged Particles[M]. New York:Interscience Publishers, 1963
    [16]
    MCILWAIN C E. Coordinates for mapping the distribution of magnetically trapped particles[J]. J. Geophys. Res., 1961, 66(11).DOI: 10.1029/JZ066i011p03681
    [17]
    MCILWAIN C E. Magnetic coordinates[J]. Space Sci. Rev., 1966, 5(5):585-598
    [18]
    TU W G, CUNNINGHAM Y, CHEN M, et al. Modeling radiation belt electron dynamics during gemchallenge intervals with the dream3d diffusion model[J]. J. Geophys. Res.:Space Phys., 2013, 118(10):6197-6211
    [19]
    ROEDERER J G. On the adiabatic motion of energetic particles in a model magnetosphere[J]. J. Geophys. Res. Atmos., 1967, 72:981-992
    [20]
    ROEDERER J G. Dynamics of Geomagnetically Trapped Radiation[M]. New York:Springer, 1970
    [21]
    ROEDERER J G, LEJOSNE S. Coordinates for representing radiation belt particle flux[J]. J. Geophys. Res.:Space Phys., 2018, 123(2):1381-1387
    [22]
    ZHEN Jie, CHU Wei. Numerical computation of proton geomagnetic vertical cutoff rigidities on 7-8 November 2004[J]. Chin. J. Space Sci., 2013, 33(3):250-257(甄杰, 楚伟. 质子地磁垂直截止刚度在2004年11月7-8日两个时刻处的数值模拟[J]. 空间科学学报, 2013, 33(3):250-257)
    [23]
    CHU W, QIN G. The geomagnetic cutoff rigidities at high latitudes for different solar wind and geomagnetic conditions[J]. Ann. Geophys., 2016, 34(1):45-53
    [24]
    757-5595-4
    [25]
    SCHLICKEISER Reinhard. Cosmic Ray Astrophysics[M]. Berlin:Springer Science & Business Media, 2013
    [26]
    MING Zhang. Theory of energetic particle transport in the magnetosphere:a noncanonical approach[J]. J. Geophys. Res. Space Phys., 2006, 111(A4).DOI: 10.1029/2005JA011323
    [27]
    XIAO F, SU Z, ZHENG H, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process[J]. J. Geophys. Res. Space Phys., 2009, 114:A03201
    [28]
    MING Zhang. A markov stochastic process theory of cosmic-ray modulation[J]. Astrophys. J., 1999, 513(1):409
    [29]
    TAO X, ALBERT J M, CHAN A A. Numerical modeling of multidimensional diffusion in the radiation belts using layer methods[J]. J. Geophys. Res.:Space Phys., 2009, 114:A02215
    [30]
    TAO X, CHAN A A, ALBERT J M, et al. Stochastic modeling of multidimensional diffusion in the radiation belts[J]. J. Geophys. Res.:Space Phys., 2008, 113(A7):10.1029/2007JA012985
    [31]
    JOKIPII J R. Cosmic-ray propagation. I. Charged particles in a random magnetic field[J]. Astrophys. J., 1966, 146:480
    [32]
    JOKIPII J. Cosmic-ray propagation. Ⅱ. diffusion in the interplanetary magnetic field[J]. Astrophys. J., 1967, 149:405
    [33]
    XU Ronglan, LI Lei. Magnetospheric Particle Dynamics[M]. Beijing:Science Press, 2005(徐荣栏, 李磊. 磁层粒子动力学[M]. 北京:科学出版社, 2005)
    [34]
    FEI Y, CHAN A A, ELKINGTON S R, et al. Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm[J]. J. Geophys. Res. Space Phys., 2006, 111(A12).DOI: 10.1029/2005JA011211
    [35]
    LIU W, TU W, LI X, et al. On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS[J]. Geophys. Res. Lett., 2016, 43(3):1023-1030
    [36]
    SUMMERS D. Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere[J]. J. Geophys. Res.:Space Phys., 2005, 110:A08213
    [37]
    BRAUTIGAM D H, GINET G P, ALBERT J M, et al. CRRES electric field power spectra and radial diffusion coefficients[J]. J. Geophys. Res. Space Phys., 2005, 110(A2):DOI: 10.1029/2004ja010612
    [38]
    SHALCHI A. Nonlinear Cosmic Ray Diffusion Theories[M]. Berlin:Springer-Verlag, 2009
    [39]
    SOUTHWOOD D J, HUGHES W J. Theory of hydromagnetic waves in the magnetosphere[J]. Space Sci. Rev., 1983, 35(4):301-366
    [40]
    KIVELSON M G, SOUTHWOOD D J. Resonant ULF waves:a new interpretation[J]. Geophys. Res. Lett., 1985, 12(1):DOI: 10.1029/GL012i001p00049
    [41]
    ZONG Qiugang, WANG Yongfu, YUAN Chongjing, et al. Fast acceleration of "Killer" electrons and energetic ions by interplanetary shock stimulated ULF waves in the inner magnetosphere[J]. Chin. Sci. Bull., 2011, 7:464-476(宗秋刚, 王永福, 袁憧憬, 等. 内磁层中行星际激波激发的超低频波对"杀手"电子和能量离子的快速加速[J]. 科学通报, 2011, 2011, 7:464-476)
    [42]
    QIN G, MATTHAEUS W, BIEBER J. Perpendicular transport of charged particles in composite model turbulence:recovery of diffusion[J]. Astrophys. J. Lett., 2002, 578(2):L117
    [43]
    QIN G, MATTHAEUS W, BIEBER J. Subdiffusive transport of charged particles perpendicular to the large scale magnetic field[J]. Geophys. Res. Lett., 2002, 29(4):7-1-7-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(613) PDF Downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return