Citation: | WANG Miao, LI Zheng, LÜ Jianyong. Characteristics Analysis of the Spatial and Temporal Distributions of Stratopause Temperature Based on SABER Measurements[J]. Chinese Journal of Space Science, 2021, 41(5): 760-768. doi: 10.11728/cjss2021.05.760 |
[1] |
MOHANAKUMAR K, DEVANARAYANAN S. Solar cycle and equatorial stratopause temperature[J]. J. Earth Syst. Sci., 1983, 92(1):31-36
|
[2] |
BARNETT J J. The mean meridional temperature behaviour of the stratosphere from November 1970 to November 1971 derived from measurements by the Selective Chopper Radiometer on Nimbus IV[J]. Quart. J. Roy. Meteorol. Soc., 1974, 100:505-530
|
[3] |
LABITZKE K. The temperature in the upper stratosphere:Differences between hemispheres[J]. J. Geophys. Res., 1974, 79:2171-2175
|
[4] |
KANZAWA H. Warm stratopause in the Antarctic winter[J]. J. Atmos. Sci., 1989, 46(3):435-438
|
[5] |
GUO Wenjie, YAN Zhaoai, HU Xiong, et al. Seasonal variation of atmospheric temperature and gravity wave activity over Beijing area[J]. Chin. J. Space Sci., 2017, 37(2):177-184(郭文杰, 闫召爱, 胡雄, 等. 北京地区大气温度及重力波活动的季节变化[J]. 空间科学学报, 2017, 37(2):177-184)
|
[6] |
CROOKS S A, GRAY L J. Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset[J]. J. Clim., 2005, 18(7):996-1015
|
[7] |
FRAME T H A, GRAY L J. The 11-yr solar cycle in ERA-40 data:an update to 2008[J]. J. Clim., 2010, 23(8):2213-2222
|
[8] |
LI Gang, TAN Yanke, LI Chongyin, et al. The distribution characteristics of total ozone and its relationship with stratospheric temperature during boreal winter in the recent 30 years[J]. Chin. J. Geophys., 2015, 58(5):1475-1491(李刚, 谭言科, 李崇银, 等. 近30年北半球冬季臭氧总量分布特征及其与平流层温度的关系[J]. 地球物理学报, 2015, 58(5):1475-1491)
|
[9] |
REMSBERG E. Observation and attribution of temperature trends near the stratopause from HALOE[J]. J. Geophys. Res.:Atmos., 2019, 124:6600-6611
|
[10] |
XIE Fei, TIAN Wenshou, LI Jianping, et al. The possible effects of future increase in methane emission on the stratospheric water vapor and global ozone[J]. Acta Meteorol. Sin., 2013, 71(3):555-567(谢飞, 田文寿, 李建平, 等. 未来甲烷排放增加对平流层水汽和全球臭氧的影响[J]. 气象学报, 2013, 71(3):555-567)
|
[11] |
FRANCE J A, HARVEY V L, RANDALL C E, et al. A climatology of stratopause temperature and height in the polar vortex and anticyclones[J]. J. Geophys. Res., 2012, 117:D06116
|
[12] |
FRANCE J A, HARVEY V L. A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause[J]. J. Geophys. Res. Atmos., 2013, 118:2241-2254
|
[13] |
MLYNCZAK M G, HUNT L A, MERTENS C J, et al. Influence of solar variability on the infrared radiative cooling of the thermosphere from 2002 to 2014[J]. Geophys. Res. Lett., 2014, 41:2508-2513
|
[14] |
RAMESH K, SRIDHARAN S, VIJAYA B R S. Dominance of chemical heating over dynamics in causing a few large mesospheric inversion layer events during January-February 2011[J]. J. Geophys. Res.:Space Phys., 2013, 118(10):6751-6765
|
[15] |
MERTENS C J, MLYNCZAK M G, LOPEZ-PUERTAS M, et al. Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-μm Earth limb emission under non-LTE conditions[J]. Geophys. Res. Lett., 2001, 28:1391-1394
|
[16] |
MERTENS C J, MLYNCZAK M G, LOPEZ-PUERTAS M, et al. Retrieval of kinetic temperature and carbon dioxide abundance from non-local thermodynamic equilibrium limb emission measurements made by the SABER experiment on the TIMED satellite[J]. Proc. SPIE Int. Soc. Opt. Eng., 2002, 4882:DOI: 10.1117/12.463358
|
[17] |
REMSBERG E, LINGENFELSER G, HARVEY V L, et al. On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses[J]. J. Geophys. Res., 2003, 108(D19):4628
|
[18] |
PEARSON K. On lines and plans of closest fit to system of points in space philos[J]. Magnetism, 1902, 6:559-572
|
[19] |
PANG Yishu, ZHU Congwen, LIU Kai. Analysis of stability of EOF modes in summer rainfall anomalies in China[J]. Chin. J. Atmos. Sci., 2014, 38(6):1137-1146(庞轶舒, 祝从文, 刘凯. 中国夏季降水异常EOF模态的时间稳定性分析[J]. 大气科学, 2014, 38(6):1137-1146)
|
[20] |
MARSH D R, SOLOMON S C, REYNOLDS A E. Empirical model of nitric oxide in the lower thermosphere[J]. J. Geophys. Res., 2004, 109:A07301
|
[21] |
RUAN H, LEI J, DOU X, et al. An exospheric temperature model based on CHAMP observations and TIEGCM simulations[J]. Space Weather, 2018, 16(2):147-156
|
[22] |
FLYNN S, KNIPP D J, MATSUO T, et al. Understanding the global variability in thermospheric nitric oxide flux using empirical orthogonal functions (EOFs)[J]. J. Geophys. Res.:Space Phys., 2018, 123:DOI: 10.1029/2018JA025353
|
[23] |
LI Z, KNIPP D, WANG W, et al. An EOFs study of thermospheric nitric oxide flux based on TIEGCM simulations[J]. J. Geophys. Res.:Space Phys., 2019, 124:9695-9708
|
[24] |
FU S, ZHAO L L, ZANK G P, et al. An ACE/CRIS-observation-based galactic cosmic rays heavy nuclei spectra model II[J]. Sci. China Phys. Mech. Astron., 2020, 63:219511
|
[25] |
LU Jinpeng, XIE Fei, TIAN Wenshou, et al. Interannual variations in lower stratospheric ozone during the period 1984-2016[J]. J. Geophys. Res. Atmos., 2019, 124(14):8225-8241
|
[26] |
LACIS A A, HANSEN J E. A parameterization for the absorption of solar radiation in the Earth's atmosphere[J]. J. Atmos. Sci., 1974, 31:118-133
|
[27] |
MEINSHAUSEN Malte, SMITH S J, CALVIN K, et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300[J]. Clim. Change, 2011, 109(1-2SI):213-241
|