Volume 41 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
WEI Xinhua, CAI Chunlin. Multi-case Study of Current Sheet Flapping Motions Induced by Non-adiabatic Ions[J]. Chinese Journal of Space Science, 2021, 41(6): 858-868. doi: 10.11728/cjss2021.06.858
Citation: WEI Xinhua, CAI Chunlin. Multi-case Study of Current Sheet Flapping Motions Induced by Non-adiabatic Ions[J]. Chinese Journal of Space Science, 2021, 41(6): 858-868. doi: 10.11728/cjss2021.06.858

Multi-case Study of Current Sheet Flapping Motions Induced by Non-adiabatic Ions

doi: 10.11728/cjss2021.06.858 cstr: 32142.14.cjss2021.06.858
Funds:

Supported by the National Natural Science Foundation of China (41174144, 40974098)

More Information
  • Author Bio:

    WEI Xinhua,E-mail:xhwei@spaceweather.ac.cn

  • Received Date: 2020-03-25
  • Rev Recd Date: 2020-12-03
  • Publish Date: 2021-11-15
  • In this paper, the y-component of magnetic field line curvature in the plasma sheet was analyzed, and two kinds of shear structures of the flapping current sheet were found, i.e. symmetric and antisymmetric. The alternating bending orientations of the guiding field are exactly corresponding to alternating north-south asymmetries of the bouncing ion population in the sheet center. Those alternating asymmetric plasma sources consequently induce the current sheet flapping motion as a driver. In addition, a substantial particle population with downward motion was observed in the center of a bifurcated current sheet. This population is identified as the quasi-adiabatic particles, and provides a net current opposite to the conventional cross-tail current.

     

  • loading
  • [1]
    LUI A T Y, MENG C I, AKASOFU S I. Wavy nature of the magnetotail neutral sheet[J]. Geophys. Res. Lett., 1978, 5:279-282
    [2]
    SPEISER T W. Particle trajectories in model current sheets:2. applications to auroras using a geomagnetic tail model[J]. J. Geophys. Res., 1967, 72(15):3919-3932
    [3]
    SERGEEV V, ANGELOPOULOS V, CARLSON C, et al. Current sheet measurements within a flapping plasma sheet[J]. J. Geophys. Res., 1998, 103:9177-9187
    [4]
    NAKAGAWA T, NISHIDA A. Southward magnetic field in the neutral sheet produced by wavy motions in the quiet plasma sheet[J]. Ann. Geophys., 1989, 26:3669-3676
    [5]
    RUNOV A, NAKAMURA R, BAUMJOHANN W, et al. Cluster observation of a bifurcated current sheet[J]. Geophys. Res. Lett., 2002, 30(2):1036
    [6]
    SERGEEV V, RUNOV A, BAUMJOHANN W, et al. Current sheet flapping motion and structure observed by Cluster[J]. Geophys. Res. Lett., 2003, 30(6):1327
    [7]
    CAI C L, DANDOURAS I, REME H, et al. Cluster observations on the thin current sheet in the magnetotail[J]. Ann. Geophys., 2008, 26(4):929-940
    [8]
    RUNOV A, SERGEEV V A, BAUMJOHANN W, et al. Electric current and magnetic field geometry in flapping magnetotail current sheets[J]. Ann. Geophys., 2005, 23:1391-1403
    [9]
    SERGEEV V, RUNOV A, BAUMJOHANN W, et al. Orientation and propagation of current sheet oscillations[J]. Geophys. Res. Lett., 2004, 31. DOI: 10.1029/2003GL019346
    [10]
    RUNOV A, ANGELOPOULOS V, SERGEEV V A, et al. Global properties of magnetotail current sheet flapping:THEMIS perspectives[J]. Ann. Geophys., 2009, 27:319
    [11]
    FORSYTH et al. Solar wind and substorm excitation of the wavy current sheet. Ann Geophys[J], 2009,, 327:2457-2474
    [12]
    FOFXYGH C, LESTER M, FEAR R C, et al. Solar wind and substorm excitation of the wavy current sheet[J]. Ann. Geophys., 2009, 327:2457-2474
    [13]
    LI L Y, CAO J B, ZHOU G C, et al. Multiple responses of magnetotail to the enhancement and fluctuation of solar wind dynamic pressure and the southward turning of interplanetary magnetic field[J]. J. Geophys. Res., 2011, 116(A12). DOI: 10.1029/2011JA016816
    [14]
    MUKAI T, HOSHINO M, et al. Evolution of the thin current sheet in a substorm observed by Geotail[J]. J. Geophys. Res., 2003, 108(A5), 1189. DOI: 10.1029/2002JA009785,
    [15]
    GOLOVCHANSKYA I V, MALTSEV Y P. On the identification of plasma sheet flapping waves observed by Cluster[J]. J. Geophys. Res., 2005, 32:L17S13
    [16]
    CAO J B, MA Y D, PARKS G, et al. Joint observations by Cluster satellites of bursty bulk flows in the magnetotail[J]. J. Geophys. Res., 2006, 111(A04206). DOI:10. 1029/2005JA011322
    [17]
    CAO J B, MA Y D, PARKS G, et al. Kinetic analysis of the energy transport of bursty bulk flows in the plasma sheet[J]. J. Geophys. Res., 2013, A118(1):313-320
    [18]
    LI L Y, YU J, CAO J B, et al. Rapid loss of the plasma sheet energetic electrons associated with the growth of whistler mode waves inside the bursty bulk flows[J]. J. Geophys. Res., 2013, 118:7200-7210
    [19]
    DUAN A Y, CAO J B, MA Y D, et al. Cluster observations of large-scale southward movement and dawnward-duskward flapping of Earth's magnetotail current sheet[J]. Sci. China., 2013, 56(1):194-204
    [20]
    FRUIT G, LOUARN P, BUDNIK E, et al. On the propagation of low frequency fluctuations in the plasma sheet:2. Characterization of the MHD eigenmodes and physical implication[J]. J. Geophys. Res., 2004, 109(A3). DOI: 10.1029/2003JA010229
    [21]
    LAPENTA G, BRACKBILL J U. A kinetic theory for the drift-kink instability[J]. J. Geophys. Res., 1997, 102(A12):27099-27108
    [22]
    KARIMABADI H, DAUGHTON W, PRITCHETT P L, et al. Ion-ion kink instability in the magnetotail:1. Linear theory[J]. J. Geophys. Res., 2003, 108(A11):1400
    [23]
    MALOVA H V, ZELENYI L M, POPOV V Y, et al. Asymmetric thin current sheets in the Earth's magnetotail[J]. Geophys. Res. Lett., 2007, 34(16). DOI:10. 1029/2007GL030011
    [24]
    WEI X H, CAI C L, CAO J B, et al. Flapping motions of the magnetotail current sheet excited by nonadiabatic ions[J]. Geophys. Res. Lett., 2015, 42:4731-4735
    [25]
    WEI Y Y, HUANG S Y, RONG Z J, et al. Observations of short-period current sheet flapping events in the Earth's magnetotail[J]. Astrophys. J., 2019, 874(2):L18
    [26]
    BUCHNER J, ZELENYI L M. Deterministic chaos in the dynamics of charged particles near a magnetic field reversal[J]. Phys. Lett., 1986, 118:395-399
    [27]
    BUCHNER J, ZELENYI L M. Regular and chaotic charged particle motion in magnetotail like field reversals:1. Basic theory of trapped motion[J]. J. Geophys. Res., 1989, 94:11821-11842
    [28]
    SPEISER T W. Particle trajectories in model current sheets:1. Analytical solutions[J]. J. Geophys. Res., 1965, 70:4219-4226
    [29]
    CHEN J. Nonlinear dynamics of charged particles in the magnetotail[J]. J. Geophys. Res., 1992, 97:15011-15050
    [30]
    DELCOURT D C, DELMONT G, SAUVAUD J A, et al. Centrifugally driven phase bunching and related current sheet structure in the near-Earth magnetotail[J]. J. Geophys. Res., 1996, 101:19839-19847
    [31]
    GRIGORENKO E E, MALOVAM H V, ARTEMYEV A V, et al. Current sheet structure and kinetic properties of plasma flows during a near-Earth magnetic reconnection under the presence of a guide field[J]. J. Geophys. Res., 2013, 118:3265-3287
    [32]
    DELCOURT D C, MARTIN R F. Application of the centrifugal impulse model toparticle motion in the near-Earth magnetotail[J]. J. Geophys. Res., 1994, 99:23583
    [33]
    MALOVA H V, MINGALEV O V, GRIGORENKO E E, et al. Formation of self-organized shear structures in thin current sheets[J]. J. Geophys. Res., 2015, 120:4800-4824
    [34]
    ZELENYI L M, MALOVA H V, POPOV V Y. Bifurcation of thin current sheets in the Earth's magnetosphere[J]. Sov. Phys. JETP Engl. Transl., 2003, 78:296-299
    [35]
    REME H, AOUSTIN C, BOSQUED J M, et al. First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment[J]. Ann. Geophys., 2001, 19:1303
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(333) PDF Downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return