Volume 42 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
WANG Rukun, ZHAO Kai, FENG Dandan, WANG Zihui, TANG Muxian, XIONG Yating, FENG Ling. Statistical Relationships between Ionospheric Upflows and Various Parameters during Geomagnetic Storms (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 51-64.  DOI: 10.11728/cjss2022.01.201116101
Citation: WANG Rukun, ZHAO Kai, FENG Dandan, WANG Zihui, TANG Muxian, XIONG Yating, FENG Ling. Statistical Relationships between Ionospheric Upflows and Various Parameters during Geomagnetic Storms (in Chinese). Chinese Journal of Space Science,  2022, 42(1): 51-64.  DOI: 10.11728/cjss2022.01.201116101

Statistical Relationships between Ionospheric Upflows and Various Parameters during Geomagnetic Storms

doi: 10.11728/cjss2022.01.201116101 cstr: 32142.14.cjss2022.01.201116101
  • Received Date: 2020-11-15
  • Accepted Date: 2021-08-06
  • Rev Recd Date: 2021-09-05
  • Available Online: 2022-05-25
  • A collection of data from 149 orbits by the Fast Auroral SnapshoT (FAST) mission during 34 geomagnetic storms from 1997 to 2006 is used to analyze the energy flux of upflowing ions as a function of storm phases, and analyze the relationships between the flux and the parameters, including Sym-H index, Kp index, and the Poynting flux to construct empirical models. Results show that, in the main phase of the storm, the energy flux exceeds 108 eV·cm–2·s–1·sr–1·eV –1, and in the initial and recovery phases, the energy flux can exceed 107 eV·cm–2·s–1·sr–1·eV –1. The averaged energy flux in the main phase is higher than that in the initial and recovery phases. In the initial phase, the flux is significantly positively correlated to Sym-H, Kp and the Poynting flux. The correlation coefficients are 0.890, 0.664 and 0.660, respectively. In the main phase, the correlation coefficients are 0.858, 0.823 and 0.541, respectively. Empirical formulas for the energy flux as functions of the Sym-H and the Poynting flux are constructed. In the main phase,

    \begin{document}$ {J}_{{i}^{+}}={10}^{5.324 \pm 0.581}\times {\mathrm{S}\mathrm{y}\mathrm{m}{\text{-}}H}^{1.465 \pm 0.340} $\end{document}

    ,

    $ {J}_{{i}^{+}}={10}^{6.469 \pm 0.798}\times  $$  {{S}_{\mathrm{d}\mathrm{c}}}^{0.888 \pm 0.703} $

    . In the initial phase, due to the rapid injection of the energy during geomagnetic disturbance and the rapid energy acquisition of ionospheric ions, the ion energy flux is highly correlated with the geomagnetic disturbance indices. Meanwhile, the energy flux increases by two orders of magnitude in the main phase. The Joule dissipation caused by the downward Poynting flux is one of the important sources of ion energy acquisition, and a strong correlation is observed.

     

  • loading
  • [1]
    SHELLEY E G, JOHNSON R G, SHARP R D. Satellite observations of energetic heavy ions during a geomagnetic storm[J]. Journal of Geophysical Research, 1972, 77(31): 6104-6110 doi: 10.1029/JA077i031p06104
    [2]
    YAU A W, SHELLEY E G, PETERSON W K, et al. Energetic auroral and polar ion outflow at DE 1 altitudes: Magnitude, composition, magnetic activity dependence, and long-term variations[J]. Journal of Geophysical Research, 1985, 90(A9): 8417-8432 doi: 10.1029/JA090iA09p08417
    [3]
    BURCHILL J K, KNUDSEN D J, CLEMMONS J H, et al. Thermal ion upflow in the cusp ionosphere and its dependence on soft electron energy flux[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A5): A05206
    [4]
    MOORE T E, KHAZANOV G V. Mechanisms of ionospheric mass escape[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A12): A00J13
    [5]
    ZHAO K, CHEN K W, JIANG Y, et al. Latitude dependence of low-altitude O+ ion upflow: Statistical results from FAST observations[J]. Journal of Geophysical Research: Space Physics, 2017, 122(9): 9705-9722 doi: 10.1002/2017JA024075
    [6]
    ZHAO K, KISTLER L M, LUND E J, et al. Factors controlling O+ and H+ outflow in the cusp during a geomagnetic storm: FAST/TEAMS observations[J]. Geophysical Research Letters, 2020, 47(11): e2020GL086975
    [7]
    傅帅, 蒋勇, 赵凯, 等. 极区顶部电离层离子上行的太阳活动依赖性研究[J]. 空间科学学报, 2017, 37(1): 28-38 doi: 10.11728/cjss2017.01.028

    FU Shuai, JIANG Yong, ZHAO Kai, et al. Solar activity dependence of ionosphere ion upflow in the polar topside[J]. Chinese Journal of Space Science, 2017, 37(1): 28-38 doi: 10.11728/cjss2017.01.028
    [8]
    CULLY C M, DONOVAN E F, YAU A W, et al. Akebono/suprathermal mass spectrometer observations of low-energy ion outflow: Dependence on magnetic activity and solar wind conditions[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A2): 1093
    [9]
    赵凯, 蒋勇, 门可佩, 等. 不同地磁活动水平下电离层H+上行的半球对比研究[J]. 地球物理学报, 2014, 57(11): 3715-3728 doi: 10.6038/cjg20141126

    ZHAO Kai, JIANG Yong, MEN Kepei, et al. Interhemispheric comparisons of ionospheric upflow H+ at various geomagnetic activity levels using FAST observations[J]. Chinese Journal of Geophysics, 2014, 57(11): 3715-3728 doi: 10.6038/cjg20141126
    [10]
    周康俊, 蔡红涛, 李影, 等. 高纬日侧电离层离子上行的地磁活动依赖性研究[J]. 地球物理学报, 2018, 61(2): 423-436 doi: 10.6038/cjg2018L0597

    ZHOU Kangjun, CAI Hongtao, LI Ying, et al. Geomagnetic activity dependences of high-latitude dayside ionospheric ion upflows[J]. Chinese Journal of Geophysics, 2018, 61(2): 423-436 doi: 10.6038/cjg2018L0597
    [11]
    ZHAO K, JIANG Y, CHEN K W, et al. Geomagnetic and solar activity dependence of ionospheric upflowing O+: FAST observations[J]. Astrophysics and Space Science, 2016, 361(9): 295 doi: 10.1007/s10509-016-2872-3
    [12]
    WILSON G R, OBER D M, GERMANY G A, et al. Nightside auroral zone and polar cap ion outflow as a function of substorm size and phase[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A2): A02206
    [13]
    OGAWA Y, SAWATSUBASHI M, BUCHERT S C, et al. Relationship between auroral substorm and ion upflow in the nightside polar ionosphere[J]. Journal of Geophysical Research: Space Physics, 2013, 118(11): 7426-7437 doi: 10.1002/2013JA018965
    [14]
    DENG Y, SHENG C, SU Y J, et al. Correlation between Poynting flux and soft electron precipitation in the dayside polar cap boundary regions[J]. Journal of Geophysical Research: Space Physics, 2015, 120(10): 9102-9109 doi: 10.1002/2015JA021075
    [15]
    YORDANOVA E, SUNDKVIST D, BUCHERT S C, et al. Energy input from the exterior cusp into the ionosphere: Correlated ground-based and satellite observations[J]. Geophysical Research Letters, 2007, 34(4): L04102
    [16]
    HUANG C Y, HUANG Y S, SU Y J, et al. DMSP observations of high latitude Poynting flux during magnetic storms[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 164: 294-307 doi: 10.1016/j.jastp.2017.09.005
    [17]
    STRANGEWAY R J, ERGUN R E, SU Y J, et al. Factors controlling ionospheric outflows as observed at intermediate altitudes[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A3): A03221
    [18]
    CARLSON C W, PFAFF R F, WATZIN J G, et al. The fast auroral SnapshoT (FAST) mission[J]. Geophysical Research Letters, 1998, 25(12): 2013-2016 doi: 10.1029/98GL01592
    [19]
    YANG Shaofeng. Low latitude pulsations during SC storm[J]. Chinese Journal of Geophysics, 1992, 35(2): 133-141 doi: 10.3321/j.issn:0001-5733.1992.02.001
    [20]
    FU Suiyan, PU Zuyin, ZONG Qiugang, et al. Ion composition variations in the ring current during intense magnetic storms and their relationship with evolution of storms[J]. Chinese Journal of Geophysics, 2001, 44(1): 1-11 doi: 10.3321/j.issn:0001-5733.2001.01.001
    [21]
    ZHENG Y H, MOORE T E, MOZER F S, et al. Polar study of ionospheric ion outflow versus energy input[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A7): A07210
    [22]
    LENNARTSSON O W, COLLIN H L, PETERSON W K. Solar wind control of Earth’s H+ and O+ outflow rates in the 15-eV to 33-keV energy range[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A12): A12212 doi: 10.1029/2004JA010690
    [23]
    BOUHRAM M, DUBOULOZ N, MALINGRE M, et al. Ion outflow and associated perpendicular heating in the cusp observed by Interball Auroral Probe and FAST Auroral Snapshot[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A2): 1023
    [24]
    CUI Y B, FU S Y, ZONG Q G, et al. Altitude of the upper boundary of AAR based on observations of ion beams in inverted-V structures: a case study[J]. Science China Earth Sciences, 2016, 59(7): 1489-1497 doi: 10.1007/s11430-016-0019-3
    [25]
    LUND E J, MÖBIUS E, CARLSON C W, et al. Transverse ion acceleration mechanisms in the aurora at solar minimum: occurrence distributions[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62(6): 467-475 doi: 10.1016/S1364-6826(00)00013-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article Views(918) PDF Downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return