Citation: | TANG Hong, ZHOU Chuanjiao, LI Xiongyao, LIU Jianzhong, MO Bing, YU Wen, ZENG Xiaojia. Infrared Spectroscopic Detection of Organic Matter on the Surface of Asteroids (in Chinese). Chinese Journal of Space Science, 2022, 42(1): 117-126. DOI: 10.11728/cjss2022.01.201127103 |
The organic matter in the asteroid has recorded the formation and evolution of organic matter in the early solar system, which provides an important basis for the research on the emergence of early life precursors on Earth, and is significant for the origin and evolution of life. In this study, the composition, types and occurrence of possible organic matter in asteroids have been analyzed. The infrared spectra and influence factors of organic matter have been discussed by simulation experiments. Infrared spectra of three representative organic matter (i.e., glycine, glucose, and eicosane) at different temperatures were obtained by in-situ infrared spectroscopy measurements under temperatures ranging from – 60°C to 30°C in vacuum. In addition, the main types of organic matter of the Murchison carbonaceous chondrite were identified using the infrared spectrometer. The results show that the infrared spectral of different organic compounds are related to the types, structures, temperatures, and pressures. The identification marks of main organic matter on the surface of the asteroids have been determined. And the preliminary parameters of infrared spectrometer for exploring organic matter in asteroids are presented.
[1] |
MCFADDEN L A, WEISSMAN P R, JOHNSON T V. Encyclopedia of the Solar System[M]. 2 nd ed. Amsterdam: Academic Press, 2007
|
[2] |
肖龙. 行星地质学[M]. 北京: 地质出版社, 2013
XIAO Long. Planetarygeology[M]. Beijing: Geological Publishing House, 2013
|
[3] |
杨晶, 林杨挺, 欧阳自远. 地外有机化合物[J]. 地学前缘, 2014, 21(6): 165-187
YANG Jing, LIN Yangting, OUYANG Ziyuan. Extraterrestrial organic compounds[J]. Earth Science Frontiers, 2014, 21(6): 165-187
|
[4] |
付晓辉, 欧阳自远, 邹永廖. 太阳系生命信息探测[J]. 地学前缘, 2014, 21(1): 161-176
FU Xiaohui, OUYANG Ziyuan, ZOU Yongliao. A review of the search for life in our Solar System[J]. Earth Science Frontiers, 2014, 21(1): 161-176
|
[5] |
CRUIKSHANK D P, BROWN R H. Organic matter on asteroid 130 Elektra[J]. Science, 1987, 238(4824): 183-184 doi: 10.1126/science.238.4824.183
|
[6] |
RIVKIN A S, EMERY J P. Detection of ice and organics on an asteroidal surface[J]. Nature, 2010, 464(7293): 1322-1323 doi: 10.1038/nature09028
|
[7] |
CAMPINS H, HARGROVE K, PINILLA-ALONSO N, et al. Water ice and organics on the surface of the asteroid 24 Themis[J]. Nature, 2010, 464(7293): 1320-1321 doi: 10.1038/nature09029
|
[8] |
LICANDRO J, CAMPINS H, KELLEY M, et al. (65) Cybele: detection of small silicate grains, water-ice, and organics[J]. Astronomy and Astrophysics, 2011, 525: A34
|
[9] |
DE SANCTIS M C, AMMANNITO E, MCSWEEN H Y, et al. Localized aliphatic organic material on the surface of Ceres[J]. Science, 2017, 355(6326): 719-722 doi: 10.1126/science.aaj2305
|
[10] |
RAPONI A, DE SANCTIS M C, CARROZZO F G, et al. Organic material on Ceres: insights from visible and infrared space observations[J]. Life (Basel)
|
[11] |
KAPLAN H H, SIMON A A, EMERY J P, et al. Evidence of organics and carbonates on (101955) Bennu[C]//Proceedings of the 51 st Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2020: 1050
|
[12] |
FERRONE S, CLARK B, KAPLAN H, et al. Visible-near-infrared observations of organics and carbonates on (101955) Bennu: Classification method and search for surface context[J]. ICARUS, 2021, 368(1): 114579
|
[13] |
CHAN Q H S, STEPHANT A, FRANCHI I A, et al. Organic matter and water from asteroid Itokawa[J]. Scientific Reports, 2021, 11(1): 5125 doi: 10.1038/s41598-021-84517-x
|
[14] |
ALEXANDER C M O’D, FOGEL M, YABUTA H, et al. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter[J]. Geochimica et Cosmochimica Acta, 2007, 71(17): 4380-4403 doi: 10.1016/j.gca.2007.06.052
|
[15] |
MARTINS Z. Organic chemistry of carbonaceous meteorites[J]. Elements, 2011, 7(1): 35-40 doi: 10.2113/gselements.7.1.35
|
[16] |
SEPHTON M A. Organic compounds in carbonaceous meteorites[J]. Natural Product Reports, 2002, 19(3): 292-311 doi: 10.1039/b103775g
|
[17] |
LAWLESS J G. Amino acids in the Murchison meteorite[J]. Geochimica et Cosmochimica Acta, 1973, 37(9): 2207-2212 doi: 10.1016/0016-7037(73)90017-3
|
[18] |
PIZZARELLO S, HUANG Y S, FULLER M. The carbon isotopic distribution of Murchison amino acids[J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4963-4969 doi: 10.1016/j.gca.2004.05.024
|
[19] |
PIZZARELLO S, WANG Y, CHABAN G M. A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites[J]. Geochimica et Cosmochimica Acta, 2010, 74(21): 6206-6217 doi: 10.1016/j.gca.2010.08.013
|
[20] |
COLAPRETE A, SCHULTZ P, HELDMANN J, et al. Detection of water in the LCROSS ejecta plume[J]. Science, 2010, 330(6003): 463-468 doi: 10.1126/science.1186986
|
[21] |
GREEN R O, PIETERS C, MOUROULIS P, et al. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation[J]. Journal of Geophysical Research:Planets, 2011, 116(E10): E00G19
|
[22] |
KUMAR A S K, CHOWDHURY A R. Hyper-Spectral Imager in visible and near-infrared band for lunar compositional mapping[J]. Journal of Earth System Science, 2005, 114(6): 721-724 doi: 10.1007/BF02715956
|
[23] |
BASILEVSKY A T, KELLER H U, NATHUES A, et al. Scientific objectives and selection of targets for the SMART-1 Infrared Spectrometer (SIR)[J]. Planetary and Space Science, 2004, 52(14): 1261-1285 doi: 10.1016/j.pss.2004.09.002
|
[24] |
BIBRING J P, SOUFFLOT A, BERTHÉ M, et al. OME-GA: observatoire pour la minéralogie, l'Eau, les glaces et l'Activité[M]//WILSON A. Mars Express: the Scientific Payload. Noordwijk: ESA Publications Division, 2004: 37-49
|
[25] |
BERTAUX J L, KORABLEV O, PERRIER S, et al. SPICAM on Mars Express: observing modes and overview of UV spectrometer data and scientific results[J]. Journal of Geophysical Research:Planets, 2006, 111(E10): E10S90
|
[26] |
MURCHIE S, ARVIDSON R, BEDINI P, et al. Compact reconnaissance imaging spectrometer for mars (CRISM) on mars reconnaissance orbiter (MRO)[J]. Journal of Geophysical Research:Planets, 2007, 112(E5): E05S03
|
[27] |
BERTAUX J L, NEVEJANS D, KORABLEV O, et al. SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere[J]. Planetary and Space Science, 2007, 55(12): 1673-1700 doi: 10.1016/j.pss.2007.01.016
|
[28] |
ARNOLD G E, KAPPEL D, HAUS R, et al. VIRTIS on Venus Express: retrieval of real surface emissivity on global scales[C]//Proceedings of SPIE 9608, Infrared Remote Sensing and Instrumentation XXIII. San Diego: SPIE, 2015
|
[29] |
BROWN R H, BAINES K H, BELLUCCI G, et al. The Cassini visual and infrared mapping spectrometer (VIMS) investigation[M]//RUSSELL C T. The Cassini-Huygens Mission. Dordrecht: Springer, 2004: 111-168
|
[30] |
HE Z P, WANG B Y, LÜ G, et al. Operating principles and detection characteristics of the Visible and Near-Infrared Imaging Spectrometer in the Chang’E-3[J]. Research in Astronomy and Astrophysics, 2014, 14(12): 1567-1577 doi: 10.1088/1674-4527/14/12/006
|
[31] |
IWATA T, KITAZATO K, ABE M, et al. NIRS3: the near infrared spectrometer on hayabusa2[J]. Space Science Reviews, 2017, 208(1/2/3/4): 317-337
|
[32] |
SIMON-MILLER A A, REUTER D C. OSIRIS-REx OVIRS: a scalable visible to near-IR spectrometer for planetary study[C]//Proceedings of the 44th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2013: 1100
|
[33] |
LI C L, XU R, LV G, et al. Detection and calibration characteristics of the visible and near-infrared imaging spectrometer in the Chang'e-4[J]. Review of Scientific Instruments, 2019, 90(10): 103106 doi: 10.1063/1.5089737
|
[34] |
翁诗甫. 傅里叶变换红外光谱分析[M]. 2版. 北京: 化学工业出版社, 2010
WENG Shifu. Fourier Transform Infrared Spectroscopy[M]. 2nd ed. Beijing: Chemical Industry Press, 2010
|