Citation: | XIE Lianghai, ZHANG Aibing, LI Lei, WANG Huizi, SHI Quanqi, ZHANG Jiang, WANG Wenjing, WEISER Martin, ZHANG Yiteng, KONG Linggao, FENG Yongyong, ZHOU Bin, WANG Jindong. Chang’E-4 Energetic Neutral Atom Observation Reveals New Features about the Solar Wind–Moon Interaction (in Chinese). Chinese Journal of Space Science, 2022, 42(1): 11-24. DOI: 10.11728/cjss2022.01.20220113 |
Different from the Earth, the solar wind can directly impact the lunar surface, and partly be scattered as Energetic Neutral Atoms (ENAs). However, the lunar magnetic crustal fields in some regions, called magnetic anomalies, can deflect the solar wind to form a mini-magnetosphere, shielding the surface. All previous understandings about these processes are obtained from orbit, and the truth on the lunar surface is still unknown. The Advanced Small Analyzer for Neutrals (ASAN) onboard Chang’E-4 mission can detect the reflected Energetic Neutral Atoms (ENAs) from the lunar surface, which will provide new perspectives to study the solar wind interaction with the Moon. Here is a review on the recent works with the ENA data from ASAN, focusing on introducing some new discoveries by ASAN, such as a higher ENA reflection ratio, more ENAs gathered at lower energies, and some heavier ENAs other than the H ENA. Compare with the upstream solar wind data, it is found that the ENAs in the energy range of 105~523 eV are closely related with the solar wind. Moreover, the ENA fluxes downstream from the magnetic anomalies are generally smaller. Combined with the global Hall MHD simulation, reduction in the ENA flux is confirmed to be caused by a mini-magnetosphere. Meanwhile, it is found the formation of the mini-magnetosphere is determined by the solar wind dynamic pressure and the ion inertia length, and the mini-magnetosphere brings a deceleration to the solar wind, by a differential electrostatic potential of 50~260 V.
[1] |
PIETERS C M, GOSWAMI J N, CLARK R N, et al. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on chandrayaan-1[J]. Science, 2009, 326(5952): 568-572 doi: 10.1126/science.1178658
|
[2] |
LI Shuai, GARRICK-BETHELL I. Surface water at lunar magnetic anomalies[J]. Geophysical Research Letters, 2019, 46(24): 14318-14327 doi: 10.1029/2019GL084890
|
[3] |
WANG Huizi, ZHANG Jiang, SHI Quanqi, et al. Earth wind as a possible exogenous source of lunar surface hydration[J]. The Astrophysical Journal Letters, 2021, 907(2): L32 doi: 10.3847/2041-8213/abd559
|
[4] |
NOBLE S K, PIETERS C M, KELLER L P. An experimental approach to understanding the optical effects of space weathering[J]. Icarus, 2007, 192(2): 629-642 doi: 10.1016/j.icarus.2007.07.021
|
[5] |
WU Yanxue, LI Xiongyao, YAO Wenqing, et al. Impact characteristics of different rocks in a pulsed laser irradiation experiment: simulation of micrometeorite bombardment on the Moon[J]. Journal of Geophysical Research: Planets, 2017, 122(10): 1956-1967 doi: 10.1002/2016JE005220
|
[6] |
WURZ P, ROHNER U, WHITBY J A, et al. The lunar exosphere: the sputtering contribution[J]. Icarus, 2007, 191(2): 486-496 doi: 10.1016/j.icarus.2007.04.034
|
[7] |
SARANTOS M, KILLEN R M, GLENAR D A, et al. Metallic species, oxygen and silicon in the lunar exosphere: upper limits and prospects for LADEE measurements[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A3): A03103
|
[8] |
SAITO Y, YOKOTA S, TANAKA T, et al. Solar wind proton reflection at the lunar surface: low energy ion measurement by MAP-PACE onboard SELENE (KAGUYA)[J]. Geophysical Research Letters, 2008, 35(24): L24205 doi: 10.1029/2008GL036077
|
[9] |
WIESER M, BARABASH S, FUTAANA Y, et al. Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space[J]. Planetary and Space Science, 2009, 57(14/15): 2132-2134
|
[10] |
SCHAUFELBERGER A, WURZ P, BARABASH S, et al. Scattering function for energetic neutral hydrogen atoms off the lunar surface[J]. Geophysical Research Letters, 2011, 38(22): L22202
|
[11] |
FUTAANA Y, BARABASH S, WIESER M, et al. Empirical energy spectra of neutralized solar wind protons from the lunar regolith[J]. Journal of Geophysical Research: Planets, 2012, 117(E5): E05005
|
[12] |
FUNSTEN H O, ALLEGRINI F, BOCHSLER P A, et al. Reflection of solar wind hydrogen from the lunar surface[J]. Journal of Geophysical Research: Planets, 2013, 118(2): 292-305 doi: 10.1002/jgre.20055
|
[13] |
MITCHELL D L, HALEKAS J S, LIN R P, et al. Global mapping of lunar crustal magnetic fields by Lunar Prospector[J]. Icarus, 2008, 194(2): 401-409 doi: 10.1016/j.icarus.2007.10.027
|
[14] |
TSUNAKAWA H, TAKAHASHI F, SHIMIZU H, et al. Surface vector mapping of magnetic anomalies over the Moon using Kaguya and Lunar Prospector observations[J]. Journal of Geophysical Research: Planets, 2015, 120(6): 1160-1185 doi: 10.1002/2014JE004785
|
[15] |
LIN R P, MITCHELL D L, CURTIS D W, et al. Lunar surface magnetic fields and their interaction with the solar wind: results from Lunar Prospector[J]. Science, 1998, 281(5382): 1480-1484 doi: 10.1126/science.281.5382.1480
|
[16] |
HALEKAS J S, BRAIN D A, MITCHELL D L, et al. On the occurrence of magnetic enhancements caused by solar wind interaction with lunar crustal fields[J]. Geophysical Research Letters, 2006, 33(8): L08106
|
[17] |
HALEKAS J S, POPPE A R, MCFADDEN J P, et al. Evidence for small-scale collisionless shocks at the moon from ARTEMIS[J]. Geophysical Research Letters, 2014, 41(21): 7436-7443 doi: 10.1002/2014GL061973
|
[18] |
HALEKAS J S, DELORY G T, BRAIN D A, et al. Density cavity observed over a strong lunar crustal magnetic anomaly in the solar wind: a mini-magnetosphere?[J]. Planetary and Space Science, 2008, 56(7): 941-946 doi: 10.1016/j.pss.2008.01.008
|
[19] |
LUE C, FUTAANA Y, BARABASH S, et al. Strong influence of lunar crustal fields on the solar wind flow[J]. Geophysical Research Letters, 2011, 38(3): L03202
|
[20] |
SAITO Y, YOKOTA Y, ASAMURA S, et al. In-flight performance and initial results of Plasma Energy Angle and Composition Experiment (PACE) on SELENE (Kaguya)[J]. Space Science Reviews, 2010, 154(1/2/3/4): 265-303
|
[21] |
WIESER M, BARABASH S, FUTAANA Y, et al. First observation of a mini-magnetosphere above a lunar magnetic anomaly using energetic neutral atoms[J]. Geophysical Research Letters, 2010, 37(5): L05103
|
[22] |
VORBURGER A, WURZ P, BARABASH S, et al. Energetic neutral atom observations of magnetic anomalies on the lunar surface[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A7): A07208
|
[23] |
WIESER M, BARABASH S, WANG X D, et al. The advanced small analyzer for neutrals (ASAN) on the Chang’E-4 Rover Yutu-2[J]. Space Science Reviews, 2020, 216(4): 73 doi: 10.1007/s11214-020-00691-w
|
[24] |
ZHANG Aibing, WIESER M, WANG Chi, et al. Emission of energetic neutral atoms measured on the lunar surface by Chang'E-4[J]. Planetary and Space Science, 2020, 189: 104970 doi: 10.1016/j.pss.2020.104970
|
[25] |
VORBURGER A, WURZ P, BARABASH S, et al. Energetic neutral atom imaging of the lunar surface[J]. Journal of Geophysical Research:Space Physics, 2013, 118(7): 3937-3945 doi: 10.1002/jgra.50337
|
[26] |
XIE Lianghai, LI Lei, ZHANG Aibing, et al. Inside a lunar mini-magnetosphere: first energetic neutral atom measurements on the lunar surface[J]. Geophysical Research Letters, 2021, 48(14): e2021GL093943
|
[27] |
XIE Lianghai, LI Lei, ZHANG Yiteng, et al. Three-dimensional Hall MHD simulation of lunar minimagnetosphere: general characteristics and comparison with Chang'E-2 observations[J]. Journal of Geophysical Research: Space Physics, 2015, 120(8): 6559-6568 doi: 10.1002/2015JA021647
|
[28] |
SAITO Y, NISHINO M N, FUJIMOTO M, et al. Simultaneous observation of the electron acceleration and ion deceleration over lunar magnetic anomalies[J]. Earth, Planets and Space, 2012, 64(2): 4
|
[29] |
FUTAANA Y, BARABASH S, WIESER M, et al. Remote energetic neutral atom imaging of electric potential over a lunar magnetic anomaly[J]. Geophysical Research Letters, 2013, 40(2): 262-266 doi: 10.1002/grl.50135
|
[30] |
WANG Huizi, XIAO Chao, SHI Quanqi, et al. Energetic neutral atom distribution on the lunar surface and its relationship with solar wind conditions[J]. The Astrophysical Journal Letters, 2021, 922(2): L41 doi: 10.3847/2041-8213/ac34f3
|