Volume 42 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
GU Xinyu, XIAO Zhigang. Research on the Application of ARIMA-SVR Combination Model in Satellite Telemetry Parameter Prediction (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 306-312. DOI: 10.11728/cjss2022.02.210106002
Citation: GU Xinyu, XIAO Zhigang. Research on the Application of ARIMA-SVR Combination Model in Satellite Telemetry Parameter Prediction (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 306-312. DOI: 10.11728/cjss2022.02.210106002

Research on the Application of ARIMA-SVR Combination Model in Satellite Telemetry Parameter Prediction

doi: 10.11728/cjss2022.02.210106002 cstr: 32142.14.cjss2022.02.210106002
  • Received Date: 2021-01-06
  • Accepted Date: 2021-01-28
  • Rev Recd Date: 2021-11-13
  • Available Online: 2022-05-25
  • In order to provide decision analysis support for assisting the in-orbit operation of satellite, combining with the time series characteristics of satellite telemetry parameters, an ARIMA-SVR combination prediction method is used to judge whether the actual telemetry data is in the normal range through the prediction of satellite telemetry parameters. In this model, ARIMA model is used to linearly fit the preprocessed data, and SVR model is used to compensate the nonlinear part of the data. Based on the telemetry data of temperature of star sensor A in KX09 satellite, the combination model was used to predict the short-term and medium-term temperature of star sensor A, and the Root Mean Square Error (RMSE) of the short-term and medium-term temperature of star sensor A was 0.768 and 0.968, respectively. Compared with the single ARIMA model, the RMSE of the short and medium-term temperature of star sensor A was 46.2% and 16.4% higher than that of the single ARIMA model respectively. In addition, the x-axis angular velocity of gyro B on the satellite is predicted in short and medium term. In the short term prediction, the RMSE of the combined model is increased by 71.2% compared with that of the single ARIMA model. In the medium prediction, the RMSE of the combination model is 64.2% higher than that of the single ARIMA model. Experimental results show that the ARIMA-SVR combination model provides effective decision analysis support for ensuring the healthy in-orbit operation of satellites.

     

  • loading
  • [1]
    任国恒. 同步卫星遥测数据相关性分析与研究[D]. 西安: 西安工业大学, 2011

    REN Guoheng. Correlation Analysis and Research on the Telemetry Data of Synchronous Satellites[D]. Xi’an: Xi’an Technological University, 2011
    [2]
    余文艳. 机器学习在有效载荷PHM系统中的应用研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2018

    YU Wenyan. Application and Research of Machine Learning in Payload PHM System[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, the Chinese Academy of Sciences), 2018
    [3]
    ZHANG G P, PATUWO B E, HU M Y. A simulation study of artificial neural networks for nonlinear time-series forecasting[J]. Computers & Operations Research, 2001, 28(4): 381-396
    [4]
    DONATE J P, LI X D, SÁNCHEZ G G, et al. Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm[J]. Neural Computing and Applications, 2013, 22(1): 11-20 doi: 10.1007/s00521-011-0741-0
    [5]
    朱俊鹏, 赵洪利, 杜鑫, 等. 长短时记忆神经网络在卫星轨道预报中的研究[J]. 兵器装备工程学报, 2017, 38(10): 127-132 doi: 10.11809/scbgxb2017.10.026

    ZHU Junpeng, ZHAO Hongli, DU Xin, et al. Application of long short-term memory neural network to orbit prediction of satellite[J]. Journal of Ordnance Equipment Engineering, 2017, 38(10): 127-132 doi: 10.11809/scbgxb2017.10.026
    [6]
    任国恒, 朱变, 朱海. 马特拉算法在遥测数据短期预测中的应用[J]. 武汉工程大学学报, 2014, 36(2): 73-78 doi: 10.3969/j.issn.1674-2869.2014.02.014

    REN Guoheng, ZHU Bian, ZHU Hai. Application of Mallat algorithm in short-term forecasting of telemetry data[J]. Journal of Wuhan Institute of Technology, 2014, 36(2): 73-78 doi: 10.3969/j.issn.1674-2869.2014.02.014
    [7]
    刘家庆, 张弘鹏, 郭希海, 等. 基于SVR残差修正的光伏发电功率预测模型[J]. 电力工程技术, 2020, 39(5): 146-151

    LIU Jiaqing, ZHANG Hongpeng, GUO Xihai, et al. Prediction model of photovoltaic power generation based on SVR residual correction[J]. Electric Power Engineering Technology, 2020, 39(5): 146-151
    [8]
    黄红梅. 应用时间序列分析[M]. 北京: 清华大学出版社, 2016

    HUANG Hongmei. Applied Time Series Analysis[M]. Beijing: Tsinghua University Press, 2016
    [9]
    张森, 石为人, 石欣, 等. 基于偏最小二乘回归和SVM的水质预测[J]. 计算机工程与应用, 2015, 51(15): 249-254 doi: 10.3778/j.issn.1002-8331.1308-0117

    ZHANG Sen, SHI Weiren, SHI Xin, et al. Water quality prediction based on partial least squares and Support Vector Machine[J]. Computer Engineering and Applications, 2015, 51(15): 249-254 doi: 10.3778/j.issn.1002-8331.1308-0117
    [10]
    LUO Xueke, HE Yunxiao, LIU Peng, et al. Water quality prediction using an ARIMA-SVR hybrid model[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(10): 21-27 doi: 10.11988/ckyyb.201908087
    [11]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016

    ZHOU Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016
    [12]
    向超. 基于ARIMA-SVR组合模型的动力煤价格预测与实证研究[D]. 北京: 对外经济贸易大学, 2019

    XIANG Chao. Prediction and Research of Steam Coal Price Based on ARIMA and SVR Model[D]. Beijing: University of International Business and Economics, 2019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article Views(894) PDF Downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return