Volume 42 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
XU Ziling, LIU Yurong, FENG Zhun. Mission Planning for Astronomical Satellite Based on Genetic Algorithm under Tiling Coverage Strategy (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 321-328. DOI: 10.11728/cjss2022.02.210112006
Citation: XU Ziling, LIU Yurong, FENG Zhun. Mission Planning for Astronomical Satellite Based on Genetic Algorithm under Tiling Coverage Strategy (in Chinese). Chinese Journal of Space Science, 2022, 42(2): 321-328. DOI: 10.11728/cjss2022.02.210112006

Mission Planning for Astronomical Satellite Based on Genetic Algorithm under Tiling Coverage Strategy

doi: 10.11728/cjss2022.02.210112006 cstr: 32142.14.cjss2022.02.210112006
  • Received Date: 2021-01-12
  • Accepted Date: 2021-04-14
  • Rev Recd Date: 2021-04-30
  • Available Online: 2022-05-25
  • Astronomical observation is an important means for space scientific research. ToO (Target of Opportunity), such as GW (Gravitational Wave) and GRB (Gamma Ray Burst), are significant phenomena in astronomical observation. The planning of ToO observation is an important task. Astronomy satellite planning is a complex multi-objective optimization problem. In this paper, the mission planning requirements and constraints under tiling coverage strategy are abstracted, and the ToO planning model under tiling coverage strategy is established. Based on the model, a multi-objective optimization planning algorithm TPA (ToO Planning Algorithm) based on GA (Genetic Algorithm) is designed. An example is given to illustrate the solution under different parameters, where the simulation input data is provided by JAUBERT Jean of SVOM team. The simulation result shows that the TPA can effectively solve the multi-objective task planning problem of astronomical satellites ToO under coverage strategy.

     

  • loading
  • [1]
    ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102 doi: 10.1103/PhysRevLett.116.061102
    [2]
    JOHNSTON M D, MILLER G. Spike: Intelligent Scheduling of Hubble Space Telescope Observations[M]. In Morgan: Morgan Kaufmann Publishers. Intelligent Scheduling, 1994: 391-422
    [3]
    MIX M J, OMITRON. Swift TAKO User Guide Version1.0. 2003
    [4]
    GIULIANO M E, JOHNSTON M D. Multi-objective evolutionary algorithms for scheduling the James Webb space telescope[C]//Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling. Sydney: ACM, 2008: 107-115
    [5]
    CASTELLINI F, LAVAGNA M R. Advanced planning and scheduling initiative’s XMAS tool: AI for automatic scheduling of XMM-newton long term plan[C]//Submitted to 6th International Workshop on Planning and Scheduling for Space (IWPSS09), 2009
    [6]
    FRATINI S, CESTA A. The APSI framework: a platform for timeline synthesis[C]//Workshop on Planning and Scheduling with Timelines. 2012: 8-15
    [7]
    CESTA A, CORTELLESSA G, FRATINI S, et al. MrSPOCK: a long-term planning tool for Mars express[C]//6th International Workshop on Planning and Scheduling for Space, IWPSS-09. Pasadena, 2009
    [8]
    PRALET C, VERFAILLIE G. AIMS: a tool for long-term planning of the ESA INTEGRAL mission[C]//6 th International Workshop on Planning and Scheduling for Space, IWPSS-09. Pasadena, 2009
    [9]
    刘薇, 林宝军. 天文卫星巡天扫描智能规划模型及仿真[J]. 系统仿真学报, 2007, 19(3): 654-656 doi: 10.3969/j.issn.1004-731X.2007.03.047

    LIU Wei, LIN Baojun. Intelligent model of astronomical satellite using GA for scanning the celestial sphere[J]. Journal of System Simulation, 2007, 19(3): 654-656 doi: 10.3969/j.issn.1004-731X.2007.03.047
    [10]
    吴海燕, 孟新, 张玉珠, 等. 面向天文观测的空间科学卫星任务规划方法研究[J]. 空间科学学报, 2013, 33(5): 561-568 doi: 10.11728/cjss2013.05.561

    WU Haiyan, MENG Xin, ZHANG Yuzhu, et al. Research on the planning method for astronomy observation mission[J]. Chinese Journal of Space Science, 2013, 33(5): 561-568 doi: 10.11728/cjss2013.05.561
    [11]
    刘雯, 李立钢. 基于改进遗传算法的天文卫星任务规划研究[J]. 计算机仿真, 2014, 31(12): 54-58 doi: 10.3969/j.issn.1006-9348.2014.12.013

    LIU Wen, LI Ligang. Mission planning of space astronomical satellite based on improved genetic algorithm[J]. Computer Simulation, 2014, 31(12): 54-58 doi: 10.3969/j.issn.1006-9348.2014.12.013
    [12]
    韩传奇, 刘玉荣, 李虎. 基于改进遗传算法对小卫星星群任务规划研究[J]. 空间科学学报, 2019, 39(1): 129-134 doi: 10.11728/cjss2019.01.129

    HAN Chuanqi, LIU Yurong, LI Hu. Mission planning for small satellite constellations based on improved genetic algorithm[J]. Chinese Journal of Space Science, 2019, 39(1): 129-134 doi: 10.11728/cjss2019.01.129
    [13]
    刘勇. 天文卫星机遇目标任务重规划方法研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2019

    LIU Yong. Research on astronomical satellite target of opportunity task re-planning algorithm[D]. Beijing: University of Chinese Academy of Science (National Space Science Center, CAS), 2019
    [14]
    LONG X Y, WU S F, WU X F, et al. A GA-SA hybrid planning algorithm combined with improved clustering for LEO observation satellite missions[J]. Algorithms, 2019, 12(11): 231 doi: 10.3390/a12110231
    [15]
    毛李恒, 邓清, 刘柔妮, 等. 针对多星多任务仿真调度的关键路径遗传算法[J]. 系统仿真学报, 2021, 33(1): 205-214

    MAO Liheng, DENG Qing, LIU Rouni, et al. CPM-GA for multi-satellite and multi-task simulation scheduling[J]. Journal of System Simulation, 2021, 33(1): 205-214
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article Views(773) PDF Downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return