Volume 42 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
SU Doudou, BAI Weihua, DU Qifei, SUN Yueqiang, TAN Guangyuan. Forward Simulation and Comparative Experiment Analysis of Polarimetric GNSS Radio Occultations Detecting Rainfall Events (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 961-972 doi: 10.11728/cjss2022.02.210409049
Citation: SU Doudou, BAI Weihua, DU Qifei, SUN Yueqiang, TAN Guangyuan. Forward Simulation and Comparative Experiment Analysis of Polarimetric GNSS Radio Occultations Detecting Rainfall Events (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 961-972 doi: 10.11728/cjss2022.02.210409049

Forward Simulation and Comparative Experiment Analysis of Polarimetric GNSS Radio Occultations Detecting Rainfall Events

doi: 10.11728/cjss2022.02.210409049 cstr: 32142.14.cjss2022.02.210409049
  • Received Date: 2021-04-09
  • Accepted Date: 2021-05-27
  • Rev Recd Date: 2022-02-03
  • Available Online: 2022-10-13
  • Studies have proved that the Global Navigation Satellite System (GNSS) Polarimetric Radio Occultation (PRO) technology has the possibility of detecting rainfall. This study uses GPM DPR products as rainfall rate data to collocate with the latest PAZ satellite observation data, and selects representative rainfall events with a wide range of rainfall and matching with RO events. By selecting 7 raindrop shapes such as TB, and 5 raindrop size distribution models such as MP, the T-matrix method is used to simulate these rainfall events. The Pearson correlation coefficient, root mean square error, and other parameters between the simulated polarimetric phase shift and the observation data calibrated using linear trend, or the observation data calibrated using antenna pattern are calculated respectively. The Pearson correlation coefficients between the simulated value and the calibrated value using linear trend, or the calibrated value using antenna pattern are 0.9994 and 0.9933, respectively. The root mean square error between the simulated value and the calibrated value using linear trend, or the calibrated value using antenna pattern are 0.3429 and 1.2765, respectively. The comparative analysis results show that there is a high correlation between the simulated value and the polarimetric phase shift measured by PAZ and the simulated results are closer to the polarimetric phase shift calibrated using linear trend. The results show that adopting MP or JD as the raindrop size distribution model and SC or PB as the raindrop shape can get higher accuracy when simulating events with a small rainfall rate (below 1 mm·h–1). For events with high rainfall rates (above 1 mm·h–1), selecting the MP or SS raindrop size distribution model and the TB raindrop shape can simulate the best results.

     

  • loading
  • [1]
    CARDELLACH E, PADULLÉS R, TOMÁS S, et al. Probability of intense precipitation from polarimetric GNSS radio occultation observations[J]. Quarterly Journal of the Royal Meteorological Society, 2018, 144(S1): 206-220 doi: 10.1002/qj.3161
    [2]
    CARDELLACH E, TOMÁS S, OLIVERAS S, et al. Sensitivity of PAZ LEO polarimetric GNSS radio-occultation experiment to precipitation events[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 190-206 doi: 10.1109/TGRS.2014.2320309
    [3]
    PADULLÉS R, CARDELLACH E, DE LA TORRE JUÁREZ M, et al. Atmospheric polarimetric effects on GNSS radio occultations: the ROHP-PAZ field campaign[J]. Atmospheric Chemistry and Physics, 2016, 16(2): 635-649 doi: 10.5194/acp-16-635-2016
    [4]
    CARDELLACH E, RIUS A, CEREZO F, et al. Polarimetric GNSS radio-occultations for heavy rain detection[C]//Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA: IEEE, 2010: 3841-3844
    [5]
    CARDELLACH E, OLIVERAS S, RIUS A, et al. Sensing heavy precipitation with GNSS polarimetric radio occultations[J]. Geophysical Research Letters, 2019, 46(2): 1024-1031 doi: 10.1029/2018GL080412
    [6]
    PADULLÉS R, AO C O, TURK F J, et al. Calibration and validation of the polarimetric radio occultation and heavy precipitation experiment aboard the PAZ satellite[J]. Atmospheric Measurement Techniques, 2020, 13(3): 1299-1313 doi: 10.5194/amt-13-1299-2020
    [7]
    安豪. 全球导航卫星信号极化相移监测降雨强度技术研究[D]. 长沙: 国防科学技术大学, 2017

    AN Hao. Research on Monitoring Rain Rate Using Polarimetric Phase Shift of GNSS Signals[D]. Changsha: National University of Defense Technology, 2017
    [8]
    AN H, YAN W, HUANG Y X, et al. GNSS measurement of rain rate by polarimetric phase shift: theoretical analysis[J]. Atmosphere, 2016, 7(8): 101 doi: 10.3390/atmos7080101
    [9]
    SOLHEIM F S, VIVEKANANDAN J, WARE R H, et al. Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates[J]. Journal of Geophysical Research: atmospheres, 1999, 104(D8): 9663-9670 doi: 10.1029/1999JD900095
    [10]
    LIEBE H J, HUFFORD G A, COTTON M G. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz[C]//AGARD 52 nd Specialists' Meeting of the Electromagnetic Wave Propagation Panel. Palma de Mallorca, Spain: In AGARD, 1993, 3.1–3.10
    [11]
    LIEBE H J, HUFFORD G A, MANABE T. A model for the complex permittivity of water at frequencies below 1 THz[J]. International Journal of Infrared and Millimeter Waves, 1991, 12(7): 659-675 doi: 10.1007/BF01008897
    [12]
    BEARD K V, CHUANG C. A new model for the equilibrium shape of raindrops[J]. Journal of the Atmospheric Sciences, 1987, 44(11): 1509-1524 doi: 10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2
    [13]
    OGUCHI T. Summary of studies on scattering of centimetre and millimetre waves due to rain and hail[J]. Annales des Télécommunications, 1981, 36(7): 383-399
    [14]
    PRUPPACHER H R, BEARD K V. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air[J]. Quarterly Journal of the Royal Meteorological Society, 1970, 96(408): 247-256 doi: 10.1002/qj.49709640807
    [15]
    THURAI M, HUANG G J, BRINGI V N, et al. Drop shapes, model comparisons, and calculations of polarimetric radar parameters in rain[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(6): 1019-1032 doi: 10.1175/JTECH2051.1
    [16]
    STEINERT J, CHANDRA M. Cloud physical properties and empirical polarimetric measurements of rain signatures at C-band[J]. Advances in Radio Science, 2008, 6: 315-318 doi: 10.5194/ars-6-315-2008
    [17]
    GREEN A W. An approximation for the shapes of large raindrops[J]. Journal of Applied Meteorology and Climatology, 1975, 14(8): 1578-1583 doi: 10.1175/1520-0450(1975)014<1578:AAFTSO>2.0.CO;2
    [18]
    OGUCHI T. Electromagnetic wave propagation and scattering in rain and other hydrometeors[J]. Proceedings of the IEEE, 1983, 71(9): 1029-1078 doi: 10.1109/PROC.1983.12724
    [19]
    WATERMAN P C. Symmetry, unitarity, and geometry in electromagnetic scattering[J]. Physical Review D, 1971, 3(4): 825-839 doi: 10.1103/PhysRevD.3.825
    [20]
    MISHCHENKO M I, TRAVIS L D. Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 60(3): 309-324 doi: 10.1016/S0022-4073(98)00008-9
    [21]
    COLLINGE M J, DRAINE B T. Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry[J]. Journal of the Optical Society of America A, 2004, 21(10): 2023-2028 doi: 10.1364/JOSAA.21.002023
    [22]
    MARSHALL J S, PALMER W M K. The distribution of raindrops with size[J]. Journal of the Atmospheric Sciences, 1948, 5(4): 165-166
    [23]
    SEKHON R S, SRIVASTAVA R C. Doppler radar observations of drop-size distributions in a thunderstorm[J]. Journal of the Atmospheric Sciences, 1971, 28(6): 983-994 doi: 10.1175/1520-0469(1971)028<0983:DROODS>2.0.CO;2
    [24]
    JOSS J, THAMS J C, WALDVOGEL A. The variation of raindrop size distributions at locarno[J]. Proceedings of the International Conference on Cloud Physics, 1968, 18(2): 369-373
    [25]
    LAWS J O, PARSONS D A. The relation of raindrop-size to intensity[J]. Eos, Transactions American Geophysical Union, 1943, 24(2): 452-460 doi: 10.1029/TR024i002p00452
    [26]
    SMITH E A, ASRAR G, FURUHAMA Y, et al. International global precipitation measurement (GPM) program and mission: an overview[M]//LEVIZZANI V, BAUER P, TURK F J. Measuring Precipitation From Space. Dordrecht: Springer, 2007
    [27]
    CARDELLACH E, PADULLÉS R, OLIVERAS S. Radio occultation and heavy precipitation with PAZ (ROHP-PAZ) data user guide[EB/OL]. (2020-04-16)[2021-03-31].https://paz.ice.csic.es/documents/technical_documentation/ROHP-PAZ_UserGuide.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article Views(564) PDF Downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return