Volume 42 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
ZHOU Qi, ZHENG Jianhua, LI Mingtao. Analysis of Sensitive Parameters of Momentum Transfer Factor in Kinetic Impact Defending Small Bodies (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 463-475. DOI: 10.11728/cjss2022.03.210126013
Citation: ZHOU Qi, ZHENG Jianhua, LI Mingtao. Analysis of Sensitive Parameters of Momentum Transfer Factor in Kinetic Impact Defending Small Bodies (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 463-475. DOI: 10.11728/cjss2022.03.210126013

Analysis of Sensitive Parameters of Momentum Transfer Factor in Kinetic Impact Defending Small Bodies

doi: 10.11728/cjss2022.03.210126013 cstr: 32142.14.cjss2022.03.210126013
  • Received Date: 2021-01-26
  • Accepted Date: 2021-09-26
  • Rev Recd Date: 2022-02-04
  • Available Online: 2022-05-26
  • Momentum transfer factor β is the key factor to evaluate effect of kinetic impact. In this paper, theoretical model of momentum transfer factor in kinetic impact is investigated, as well as the influence of impactor properties and small body structure properties on the factor. Meanwhile, the crater effect and momentum transfer factor of small bodies with different kinetic impact schemes and structural characteristics are studied. Results show that scaling law parameter μ, a coefficient related to strength properties of target material which is obtained by ground experiment fitting, has a great effect on the factor. The velocity/density of impactor and density/surface strength of small body have a great effect on the factor for small body with a single rock structure, while radius of impactor and gravity of small body have a small effect. In the meantime, the value of β is significant. The factor is insensitive to parameters of impactor properties and small body structure properties for small body with a rubble-pile structure, and its value is close to 1. The formation of crater and momentum transfer factor in three different kinetic impact schemes indicates that the initial kinetic energy of impactor has a great influence on the factor. In the same kinetic impact scheme where gravity dominates the crater formation, the momentum transfer factor of a C-complex asteroid is largest followed by S-complex and X-complex. However, when strength dominates crater formation, the factors of all complexes are smaller and basically the same.

     

  • loading
  • [1]
    HOLSAPPLE K A, HOUSEN K R. Momentum transfer in asteroid impacts. I. Theory and scaling[J]. Icarus, 2012, 221(2): 875-887 doi: 10.1016/j.icarus.2012.09.022
    [2]
    SYAL M B, OWEN J M, MILLER P L. Deflection by kinetic impact: sensitivity to asteroid properties[J]. Icarus, 2016, 269: 50-61 doi: 10.1016/j.icarus.2016.01.010
    [3]
    GAULT D E, SHOEMAKER E M, MOORE H J, et al. Spray Ejected from the Lunar Surface by Meteoroid Impact[R]. Washington: National Aeronautics and Space Administration, 1963
    [4]
    HOUSEN K R, HOLSAPPLE K A. Ejecta from impact craters[J]. Icarus, 2011, 211(1): 856-875 doi: 10.1016/j.icarus.2010.09.017
    [5]
    MICHEL P. Physical properties of Near-Earth Objects that inform mitigation[J]. Acta Astronautica, 2013, 90(1): 6-13 doi: 10.1016/j.actaastro.2012.07.022
    [6]
    DELCHAMBRE S, ZIEGLER T, FALKE A, et al. Momentum enhancement factor estimation for asteroid redirect missions[J]. Acta Astronautica, 2018, 151: 125-136 doi: 10.1016/j.actaastro.2018.05.050
    [7]
    DEARBORN D S P, SYAL M B, BARBEE B W, et al. Options and uncertainties in planetary defense: impulse-dependent response and the physical properties of asteroids[J]. Acta Astronautica, 2020, 166: 290-305 doi: 10.1016/j.actaastro.2019.10.026
    [8]
    WALKER J D, CHOCRON S, DURDA D D, et al. Momentum enhancement from aluminum striking granite and the scale size effect[J]. International Journal of Impact Engineering, 2013, 56: 12-18 doi: 10.1016/j.ijimpeng.2012.08.003
    [9]
    HOERTH T, SCHÄFER F, HUPFER J, et al. Momentum transfer in hypervelocity impact experiments on rock targets[J]. Procedia Engineering, 2015, 103: 197-204 doi: 10.1016/j.proeng.2015.04.027
    [10]
    FLYNN G J, DURDA D D, PATMORE E B, et al. Momentum enhancement from hypervelocity crater ejecta: implications for the AIDA target[C]//(Abstract) European Planetary Science Congress 2017. Riga: EPSC, 2017, 11: EPSC2017-292
    [11]
    CHENG A F, MICHEL P, JUTZI M, et al. Asteroid impact & deflection assessment mission: kinetic impactor[J]. Planetary and Space Science, 2016, 121: 27-35 doi: 10.1016/j.pss.2015.12.004
    [12]
    MICHEL P, CHENG A, KÜPPERS M, et al. Science case for the asteroid impact mission (AIM): a component of the asteroid impact & deflection assessment (AIDA) mission[J]. Advances in Space Research, 2016, 57(12): 2529-2547 doi: 10.1016/j.asr.2016.03.031
    [13]
    STICKLE A M, RAINEY E S G, SYAL M B, et al. Modeling impact outcomes for the Double Asteroid Redirection Test (DART) mission[J]. Procedia Engineering, 2017, 204: 116-123 doi: 10.1016/j.proeng.2017.09.763
    [14]
    LUTHER R, ZHU M H, COLLINS G, et al. Effect of target properties and impact velocity on ejection dynamics and ejecta deposition[J]. Meteoritics & Planetary Science, 2018, 53(8): 1705-1732
    [15]
    RADUCAN S D, DAVISON T M, LUTHER R, et al. The role of asteroid strength, porosity and internal friction in impact momentum transfer[J]. Icarus, 2019, 329: 282-295 doi: 10.1016/j.icarus.2019.03.040
    [16]
    QUAIDE W L, OBERBECK V R. Thickness determinations of the lunar surface layer from lunar impact craters[J]. Journal of Geophysical Research, 1968, 73(16): 5247-5270 doi: 10.1029/JB073i016p05247
    [17]
    RADUCAN S D, DAVISON T M, COLLINS G S. The effects of asteroid layering on ejecta mass-velocity distribution and implications for impact momentum transfer[J]. Planetary and Space Science, 2020, 180: 104756 doi: 10.1016/j.pss.2019.104756
    [18]
    WARNER B D, HARRIS A W, PRAVEC P. The asteroid lightcurve database[J]. Icarus, 2009, 202(1): 134-146 doi: 10.1016/j.icarus.2009.02.003
    [19]
    SÁNCHEZ P, SCHEERES D J. Rotational evolution of self-gravitating aggregates with cores of variable strength[J]. Planetary and Space Science, 2018, 157: 39-47 doi: 10.1016/j.pss.2018.04.001
    [20]
    HOLSAPPLE K A, SCHMIDT R M. Point source solutions and coupling parameters in cratering mechanics[J]. Journal of Geophysical Research: Atmospheres, 1987, 92(B7): 6350-6376 doi: 10.1029/JB092iB07p06350
    [21]
    ARAKAWA M, WADA K, SAIKI T, et al. Scientific objectives of small carry-on impactor (SCI) and Deployable Camera 3 digital (DCAM3-D): observation of an ejecta curtain and a crater formed on the surface of Ryugu by an artificial high-velocity impact[J]. Space Science Reviews, 2017, 208(1/2/3/4): 187-212
    [22]
    RICHARDSON J E, MELOSH H J, LISSE C M, et al. A ballistics analysis of the deep impact ejecta plume: determining comet tempel 1's gravity, mass, and density[J]. Icarus, 2007, 190(2): 357-390 doi: 10.1016/j.icarus.2007.08.001
    [23]
    HOLSAPPLE K A, HOUSEN K R. A crater and its ejecta: an interpretation of Deep Impact[J]. Icarus, 2007, 191(2): 586-597 doi: 10.1016/j.icarus.2006.08.035
    [24]
    ERNST C M, SCHULTZ P H. Evolution of the Deep Impact flash: implications for the nucleus surface based on laboratory experiments[J]. Icarus, 2007, 190(2): 334-344 doi: 10.1016/j.icarus.2007.03.030
    [25]
    HERMALYN B, SCHULTZ P H, COLAPRETE A. LCROSS ejecta dynamics: insight from experiments[C]//41 st Lunar and Planetary Science Conference. Texas: Lunar and Planetary Institute, 2010
    [26]
    CHENG A F, STICKLE A M, FAHNESTOCK E G, et al. DART mission determination of momentum transfer: model of ejecta plume observations[J]. Icarus, 2020, 352: 113989 doi: 10.1016/j.icarus.2020.113989
    [27]
    CHENG A F, RIVKIN A S, MICHEL P, et al. AIDA DART asteroid deflection test: planetary defense and science objectives[J]. Planetary and Space Science, 2018, 157: 104-115 doi: 10.1016/j.pss.2018.02.015
    [28]
    WANG Y R, LI M T, GONG Z Z, et al. Assembled Kinetic Impactor for Deflecting Asteroids by Combining the Spacecraft with the Launch Vehicle Upper Stage[J]. Icarus, 2021, 368: 114596 doi: 10.1016/j.icarus.2021.114596
    [29]
    LI M T, WANG Y R, WANG Y L, et al. Enhanced kinetic impactor for deflecting large potentially hazardous asteroids via maneuvering space rocks[J]. Scientific Reports, 2020, 10(1): 8506 doi: 10.1038/s41598-020-65343-z
    [30]
    BRITT D T, YEOMANS D, HOUSEN K, et al. Asteroid density, porosity, and structure[M]//BOTTKE W F, CELLINO A, PAOLICCHI P, et al. Asteroids III. Tucson: University of Arizona Press, 2002: 485-500
    [31]
    CARRY B. Density of asteroids[J]. Planetary and Space Science, 2012, 73(1): 98-118 doi: 10.1016/j.pss.2012.03.009
    [32]
    BIELE J, ULAMEC S, RICHTER L, et al. The putative mechanical strength of comet surface material applied to landing on a comet[J]. Acta Astronautica, 2009, 65(7/8): 1168-1178
    [33]
    BRISSET J, COLWELL J, DOVE A, et al. Regolith behavior under asteroid-level gravity conditions: low-velocity impact experiments[J]. Progress in Earth and Planetary Science, 2018, 5(1): 73 doi: 10.1186/s40645-018-0222-5
    [34]
    BINZEL R P, RIVKIN A S, THOMAS C A, et al. Spectral properties and composition of potentially hazardous Asteroid (99942) Apophis[J]. Icarus, 2009, 200(2): 480-485 doi: 10.1016/j.icarus.2008.11.028
    [35]
    MÜLLER T G, KISS C, SCHEIRICH P, et al. Thermal infrared observations of asteroid (99942) Apophis with Herschel[J]. Astronomy & Astrophysics, 2014, 566: A22
    [36]
    TAKIZAWA S, KATSURAGI H. Scaling laws for the oblique impact cratering on an inclined granular surface[J]. Icarus, 2020, 335: 113409 doi: 10.1016/j.icarus.2019.113409
    [37]
    KOVÁČOVÁ M, NAGY R, KORNOŠ L, et al. 101955 Bennu and 162173 Ryugu: dynamical modelling of ejected particles to the Earth[J]. Planetary and Space Science, 2020, 185: 104897 doi: 10.1016/j.pss.2020.104897
    [38]
    OKADA T, FUKUHARA T, TANAKA S, et al. Highly porous nature of a primitive asteroid revealed by thermal imaging[J]. Nature, 2020, 579(7800): 518-522 doi: 10.1038/s41586-020-2102-6
    [39]
    WATANABE S, HIRABAYASHI M, HIRATA N, et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu-A spinning top-shaped rubble pile[J]. Science, 2019, 364(6437): 268-272 doi: 10.1126/science.aav8032
    [40]
    GUNDLACH B, BLUM J. Regolith grain size and cohesive strength of near-Earth Asteroid (29075) 1950 DA[J]. Icarus, 2015, 257: 126-129 doi: 10.1016/j.icarus.2015.04.032
    [41]
    FARNOCCHIA D, CHESLEY S R. Assessment of the 2880 impact threat from Asteroid (29075) 1950 DA[J]. Icarus, 2014, 229: 321-327 doi: 10.1016/j.icarus.2013.09.022
    [42]
    BUSCH M W, GIORGINI J D, OSTRO S J, et al. Physical modeling of near-Earth Asteroid (29075) 1950 DA[J]. Icarus, 2007, 190(2): 608-621 doi: 10.1016/j.icarus.2007.03.032
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article Views(1049) PDF Downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return