Citation: | ZHOU Qi, ZHENG Jianhua, LI Mingtao. Analysis of Sensitive Parameters of Momentum Transfer Factor in Kinetic Impact Defending Small Bodies (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 463-475. DOI: 10.11728/cjss2022.03.210126013 |
[1] |
HOLSAPPLE K A, HOUSEN K R. Momentum transfer in asteroid impacts. I. Theory and scaling[J]. Icarus, 2012, 221(2): 875-887 doi: 10.1016/j.icarus.2012.09.022
|
[2] |
SYAL M B, OWEN J M, MILLER P L. Deflection by kinetic impact: sensitivity to asteroid properties[J]. Icarus, 2016, 269: 50-61 doi: 10.1016/j.icarus.2016.01.010
|
[3] |
GAULT D E, SHOEMAKER E M, MOORE H J, et al. Spray Ejected from the Lunar Surface by Meteoroid Impact[R]. Washington: National Aeronautics and Space Administration, 1963
|
[4] |
HOUSEN K R, HOLSAPPLE K A. Ejecta from impact craters[J]. Icarus, 2011, 211(1): 856-875 doi: 10.1016/j.icarus.2010.09.017
|
[5] |
MICHEL P. Physical properties of Near-Earth Objects that inform mitigation[J]. Acta Astronautica, 2013, 90(1): 6-13 doi: 10.1016/j.actaastro.2012.07.022
|
[6] |
DELCHAMBRE S, ZIEGLER T, FALKE A, et al. Momentum enhancement factor estimation for asteroid redirect missions[J]. Acta Astronautica, 2018, 151: 125-136 doi: 10.1016/j.actaastro.2018.05.050
|
[7] |
DEARBORN D S P, SYAL M B, BARBEE B W, et al. Options and uncertainties in planetary defense: impulse-dependent response and the physical properties of asteroids[J]. Acta Astronautica, 2020, 166: 290-305 doi: 10.1016/j.actaastro.2019.10.026
|
[8] |
WALKER J D, CHOCRON S, DURDA D D, et al. Momentum enhancement from aluminum striking granite and the scale size effect[J]. International Journal of Impact Engineering, 2013, 56: 12-18 doi: 10.1016/j.ijimpeng.2012.08.003
|
[9] |
HOERTH T, SCHÄFER F, HUPFER J, et al. Momentum transfer in hypervelocity impact experiments on rock targets[J]. Procedia Engineering, 2015, 103: 197-204 doi: 10.1016/j.proeng.2015.04.027
|
[10] |
FLYNN G J, DURDA D D, PATMORE E B, et al. Momentum enhancement from hypervelocity crater ejecta: implications for the AIDA target[C]//(Abstract) European Planetary Science Congress 2017. Riga: EPSC, 2017, 11: EPSC2017-292
|
[11] |
CHENG A F, MICHEL P, JUTZI M, et al. Asteroid impact & deflection assessment mission: kinetic impactor[J]. Planetary and Space Science, 2016, 121: 27-35 doi: 10.1016/j.pss.2015.12.004
|
[12] |
MICHEL P, CHENG A, KÜPPERS M, et al. Science case for the asteroid impact mission (AIM): a component of the asteroid impact & deflection assessment (AIDA) mission[J]. Advances in Space Research, 2016, 57(12): 2529-2547 doi: 10.1016/j.asr.2016.03.031
|
[13] |
STICKLE A M, RAINEY E S G, SYAL M B, et al. Modeling impact outcomes for the Double Asteroid Redirection Test (DART) mission[J]. Procedia Engineering, 2017, 204: 116-123 doi: 10.1016/j.proeng.2017.09.763
|
[14] |
LUTHER R, ZHU M H, COLLINS G, et al. Effect of target properties and impact velocity on ejection dynamics and ejecta deposition[J]. Meteoritics & Planetary Science, 2018, 53(8): 1705-1732
|
[15] |
RADUCAN S D, DAVISON T M, LUTHER R, et al. The role of asteroid strength, porosity and internal friction in impact momentum transfer[J]. Icarus, 2019, 329: 282-295 doi: 10.1016/j.icarus.2019.03.040
|
[16] |
QUAIDE W L, OBERBECK V R. Thickness determinations of the lunar surface layer from lunar impact craters[J]. Journal of Geophysical Research, 1968, 73(16): 5247-5270 doi: 10.1029/JB073i016p05247
|
[17] |
RADUCAN S D, DAVISON T M, COLLINS G S. The effects of asteroid layering on ejecta mass-velocity distribution and implications for impact momentum transfer[J]. Planetary and Space Science, 2020, 180: 104756 doi: 10.1016/j.pss.2019.104756
|
[18] |
WARNER B D, HARRIS A W, PRAVEC P. The asteroid lightcurve database[J]. Icarus, 2009, 202(1): 134-146 doi: 10.1016/j.icarus.2009.02.003
|
[19] |
SÁNCHEZ P, SCHEERES D J. Rotational evolution of self-gravitating aggregates with cores of variable strength[J]. Planetary and Space Science, 2018, 157: 39-47 doi: 10.1016/j.pss.2018.04.001
|
[20] |
HOLSAPPLE K A, SCHMIDT R M. Point source solutions and coupling parameters in cratering mechanics[J]. Journal of Geophysical Research: Atmospheres, 1987, 92(B7): 6350-6376 doi: 10.1029/JB092iB07p06350
|
[21] |
ARAKAWA M, WADA K, SAIKI T, et al. Scientific objectives of small carry-on impactor (SCI) and Deployable Camera 3 digital (DCAM3-D): observation of an ejecta curtain and a crater formed on the surface of Ryugu by an artificial high-velocity impact[J]. Space Science Reviews, 2017, 208(1/2/3/4): 187-212
|
[22] |
RICHARDSON J E, MELOSH H J, LISSE C M, et al. A ballistics analysis of the deep impact ejecta plume: determining comet tempel 1's gravity, mass, and density[J]. Icarus, 2007, 190(2): 357-390 doi: 10.1016/j.icarus.2007.08.001
|
[23] |
HOLSAPPLE K A, HOUSEN K R. A crater and its ejecta: an interpretation of Deep Impact[J]. Icarus, 2007, 191(2): 586-597 doi: 10.1016/j.icarus.2006.08.035
|
[24] |
ERNST C M, SCHULTZ P H. Evolution of the Deep Impact flash: implications for the nucleus surface based on laboratory experiments[J]. Icarus, 2007, 190(2): 334-344 doi: 10.1016/j.icarus.2007.03.030
|
[25] |
HERMALYN B, SCHULTZ P H, COLAPRETE A. LCROSS ejecta dynamics: insight from experiments[C]//41 st Lunar and Planetary Science Conference. Texas: Lunar and Planetary Institute, 2010
|
[26] |
CHENG A F, STICKLE A M, FAHNESTOCK E G, et al. DART mission determination of momentum transfer: model of ejecta plume observations[J]. Icarus, 2020, 352: 113989 doi: 10.1016/j.icarus.2020.113989
|
[27] |
CHENG A F, RIVKIN A S, MICHEL P, et al. AIDA DART asteroid deflection test: planetary defense and science objectives[J]. Planetary and Space Science, 2018, 157: 104-115 doi: 10.1016/j.pss.2018.02.015
|
[28] |
WANG Y R, LI M T, GONG Z Z, et al. Assembled Kinetic Impactor for Deflecting Asteroids by Combining the Spacecraft with the Launch Vehicle Upper Stage[J]. Icarus, 2021, 368: 114596 doi: 10.1016/j.icarus.2021.114596
|
[29] |
LI M T, WANG Y R, WANG Y L, et al. Enhanced kinetic impactor for deflecting large potentially hazardous asteroids via maneuvering space rocks[J]. Scientific Reports, 2020, 10(1): 8506 doi: 10.1038/s41598-020-65343-z
|
[30] |
BRITT D T, YEOMANS D, HOUSEN K, et al. Asteroid density, porosity, and structure[M]//BOTTKE W F, CELLINO A, PAOLICCHI P, et al. Asteroids III. Tucson: University of Arizona Press, 2002: 485-500
|
[31] |
CARRY B. Density of asteroids[J]. Planetary and Space Science, 2012, 73(1): 98-118 doi: 10.1016/j.pss.2012.03.009
|
[32] |
BIELE J, ULAMEC S, RICHTER L, et al. The putative mechanical strength of comet surface material applied to landing on a comet[J]. Acta Astronautica, 2009, 65(7/8): 1168-1178
|
[33] |
BRISSET J, COLWELL J, DOVE A, et al. Regolith behavior under asteroid-level gravity conditions: low-velocity impact experiments[J]. Progress in Earth and Planetary Science, 2018, 5(1): 73 doi: 10.1186/s40645-018-0222-5
|
[34] |
BINZEL R P, RIVKIN A S, THOMAS C A, et al. Spectral properties and composition of potentially hazardous Asteroid (99942) Apophis[J]. Icarus, 2009, 200(2): 480-485 doi: 10.1016/j.icarus.2008.11.028
|
[35] |
MÜLLER T G, KISS C, SCHEIRICH P, et al. Thermal infrared observations of asteroid (99942) Apophis with Herschel[J]. Astronomy & Astrophysics, 2014, 566: A22
|
[36] |
TAKIZAWA S, KATSURAGI H. Scaling laws for the oblique impact cratering on an inclined granular surface[J]. Icarus, 2020, 335: 113409 doi: 10.1016/j.icarus.2019.113409
|
[37] |
KOVÁČOVÁ M, NAGY R, KORNOŠ L, et al. 101955 Bennu and 162173 Ryugu: dynamical modelling of ejected particles to the Earth[J]. Planetary and Space Science, 2020, 185: 104897 doi: 10.1016/j.pss.2020.104897
|
[38] |
OKADA T, FUKUHARA T, TANAKA S, et al. Highly porous nature of a primitive asteroid revealed by thermal imaging[J]. Nature, 2020, 579(7800): 518-522 doi: 10.1038/s41586-020-2102-6
|
[39] |
WATANABE S, HIRABAYASHI M, HIRATA N, et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu-A spinning top-shaped rubble pile[J]. Science, 2019, 364(6437): 268-272 doi: 10.1126/science.aav8032
|
[40] |
GUNDLACH B, BLUM J. Regolith grain size and cohesive strength of near-Earth Asteroid (29075) 1950 DA[J]. Icarus, 2015, 257: 126-129 doi: 10.1016/j.icarus.2015.04.032
|
[41] |
FARNOCCHIA D, CHESLEY S R. Assessment of the 2880 impact threat from Asteroid (29075) 1950 DA[J]. Icarus, 2014, 229: 321-327 doi: 10.1016/j.icarus.2013.09.022
|
[42] |
BUSCH M W, GIORGINI J D, OSTRO S J, et al. Physical modeling of near-Earth Asteroid (29075) 1950 DA[J]. Icarus, 2007, 190(2): 608-621 doi: 10.1016/j.icarus.2007.03.032
|