Volume 42 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
ZHENG Yanshuai, QIU Yang, XUE Kun, XU Zhengwen, ZHAO Haisheng, XIE Shouzhi. Study on Gasification Method of Metal Materials for Space Experiment (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 448-454. DOI: 10.11728/cjss2022.03.210601027
Citation: ZHENG Yanshuai, QIU Yang, XUE Kun, XU Zhengwen, ZHAO Haisheng, XIE Shouzhi. Study on Gasification Method of Metal Materials for Space Experiment (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 448-454. DOI: 10.11728/cjss2022.03.210601027

Study on Gasification Method of Metal Materials for Space Experiment

doi: 10.11728/cjss2022.03.210601027 cstr: 32142.14.cjss2022.03.210601027
  • Received Date: 2021-06-01
  • Accepted Date: 2021-08-17
  • Rev Recd Date: 2021-08-17
  • Available Online: 2022-05-25
  • Vaporized metal has been released in the ionosphere for artificially creating plasma clouds, which can realize or enhance the reflection and scattering of radio waves, thereby affecting the propagation of electromagnetic waves in the information system, and it is currently a research hotspot of emergency communication. Only the metal released in the gaseous form can sufficiently interact with the ionosphere to generate an enhanced electron density region. In the early days, a large number of studies on the release of metal gases were carried out, and the releases mainly used alkali metals and alkaline Earth metals. The mechanism by which these metals generate electron density enhancement is mainly photoionization (the effect is obvious during the day, and the nighttime effect is not obvious). In this study, lanthanide metals were selected as new releasers. Taking the lanthanide metal Samarium (Sm) as an example, a theoretical model of the self-propagating combustion synthesis reaction of Titanium Boron (Ti-B) and Titanium Carbon (Ti-C) for gasifying Sm was established. Through theoretical calculations, the pure heat release and the maximum efficiency of gasifying Sm were obtained for the two self-propagating synthesis reaction systems. According to the theoretical research results, the experimental research on the gasification of Sm in two reaction systems is carried out. The experimental results verify the correctness of the theoretical analysis. It gets rid of the disadvantage that electron density enhancement mainly relies on photoionization, and provides a kind of all-weather method of releasing electron density.

     

  • loading
  • [1]
    KLOBUCHAR J A, ABDU M A. Equatorial ionospheric irregularities produced by the Brazilian ionospheric modification experiment (BIME)[J]. Journal of Geophysical Research: Space Physics, 1989, 94(A3): 2721-2726 doi: 10.1029/JA094iA03p02721
    [2]
    许正文, 赵海生, 徐彬, 等. 电离层化学物质释放实验最新研究进展[J]. 电波科学学报, 2017, 32(2): 221-226

    XU Zhengwen, ZHAO Haisheng, XU Bin, et al. Latest development of chemical releases in ionosphere[J]. Chinese Journal of Radio Science, 2017, 32(2): 221-226
    [3]
    胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟[J]. 物理学报, 2012, 61(8): 089401 doi: 10.7498/aps.61.089401

    HU Yaogai, ZHAO Zhengyu, ZHANG Yuannong. Numerical simulation on the early dynamics of barium clouds released in the ionosphere[J]. Acta Physica Sinica, 2012, 61(8): 089401 doi: 10.7498/aps.61.089401
    [4]
    朱肖丽, 胡耀垓, 赵正予, 等. 钡和铯释放的电离层扰动效应对比[J]. 物理学报, 2020, 69(2): 029401 doi: 10.7498/aps.69.20191266

    ZHU Xiaoli, HU Yaogai, ZHAO Zhengyu, et al. Comparison between ionospheric disturbances caused by barium and cesium[J]. Acta Physica Sinica, 2020, 69(2): 029401 doi: 10.7498/aps.69.20191266
    [5]
    赵海生, 许正文, 徐朝辉, 等. 基于化学物质释放的电离层闪烁抑制方法研究[J]. 物理学报, 2019, 68(10): 109401 doi: 10.7498/aps.68.20182281

    ZHAO Haisheng, XU Zhengwen, XU Zhaohui, et al. Ionospheric scintillation suppression based on chemical release[J]. Acta Physica Sinica, 2019, 68(10): 109401 doi: 10.7498/aps.68.20182281
    [6]
    BERNHARDT P A, SIEFRING C L, BRICZINSKI S J, et al. A physics-based model for the ionization of samarium by the MOSC chemical releases in the upper atmosphere[J]. Radio Science, 2017, 52(5): 559-577 doi: 10.1002/2016RS006078
    [7]
    BERNHARDT P A, BALLENTHIN J O, BAUMGARDNER J L, et al. Ground and space-based measurement of rocket engine burns in the ionosphere[J]. IEEE Transactions on Plasma Science, 2012, 40(5): 1267-1286 doi: 10.1109/TPS.2012.2185814
    [8]
    GAO J F, GUO L X, XU Z W, et al. Simulation of plasma instabilities artificially induced in the equatorial ionosphere[J]. Physics of Plasmas, 2020, 27(9): 092902 doi: 10.1063/5.0013329
    [9]
    王劲东, 李磊, 陶然, 等. 电离层等离子体主动释放试验研究[J]. 空间科学学报, 2004, 34(6): 837-842

    WANG Jindong, LI Lei, TAO Ran, et al. Research on active plasma release experiment in ionosphere[J]. Chinese Journal of Space Science, 2004, 34(6): 837-842
    [10]
    梁英教, 车荫昌, 刘晓霞, 等. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1993: 339-382

    LIANG Yingjiao, CHE Yinchang, LIU Xiaoxia, et al. Thermodynamics Databook of Ingornic Compound[M]. Shenyang: Northeastern University Press, 1993: 339-382
    [11]
    GOLOMB D, HOFFMAN H S, BEST G T. Chemiluminescence of sodium released at night and its relation to the sodium nightglow[J]. Journal of Geophysical Research Atmospheres, 1975, 80(10): 1363-1366 doi: 10.1029/JA080i010p01363
    [12]
    李建平, 倪文, 邱永侠, 等. SHS耐火材料的应用现状及发展前景[J]. 矿物岩石地球化学通报, 1999, 18(4): 309-311

    LI Jianping, NI Wen, QIU Yongxia, et al. The application situation and the developping prospect of SHS refractory[J]. Bulletin of Mineralogy Petrology and Geochemistry, 1999, 18(4): 309-311
    [13]
    王晓峰, 李建伟, 曹钦存. Ti-Si-C三元体系自蔓延高温合成的反应热力学研究[J]. 粉末冶金技术, 2008, 26(4): 286-290

    WANG Xiaofeng, LI Jianwei, CAO Qincun. Study on the thermodynamics of Ti-Si-C system in SHS[J]. Powder Metallurgy Technology, 2008, 26(4): 286-290
    [14]
    MUKASYAN A S, ROGACHEV A S. Discrete reaction waves: Gasless combustion of solid powder mixtures[J]. Progress in Energy and Combustion Science, 2008, 34(3): 377-416 doi: 10.1016/j.pecs.2007.09.002
    [15]
    殷声. 燃烧合成[M]. 北京: 冶金工业出版社, 1999: 6

    YIN Sheng. Combustion Synthesis[M]. Beijing: Metallurgical Industry Press, 1999: 6
    [16]
    徐强, 张幸红, 赫晓东, 等. TiB/Ti复合材料自蔓延高温燃烧合成的研究[J]. 材料科学与工艺, 2001, 9(4): 347-351 doi: 10.3969/j.issn.1005-0299.2001.04.003

    XU Qiang, ZHANG Xinghong, HAO Xiaodong, et al. Self-propagating high-temperature synthesis of TiB/Ti composites[J]. Material Science and Technology, 2001, 9(4): 347-351 doi: 10.3969/j.issn.1005-0299.2001.04.003
    [17]
    王国亮, 高义民, 李烨飞, 等. 硼化钛结构稳定性、力学和热力学性能理论研究[J]. 稀有金属材料与工程, 2014, 43(3): 595-600

    WANG Guoliang, GAO Yimin, LI Yefei, et al. Theoretical study on the stabilities, mechanical and thermal properties of titanium borides[J]. Rare Metal Materials and Engineering, 2014, 43(3): 595-600
    [18]
    陈燕群, 蒋明学. 自蔓延高温合成TiB2微粉的热力学计算[J]. 西安建筑科技大学学报(自然科学版), 2006, 38(5): 728-730

    CHEN Yanqun, JIANG Mingxue. Thermodynamic calculation with self -propagating and high-temperature synthesis of TiB2 powder[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2006, 38(5): 728-730
    [19]
    何祖明, 冯旺军, 夏咏梅, 等. 自蔓延高温合成TiC-Al的热力学计算与分析[J]. 甘肃科学学报, 2008, 20(3): 35-38 doi: 10.3969/j.issn.1004-0366.2008.03.010

    HE Zuming, FENG Wangjun, XIA Yongmei, et al. The thermodynamic calculation and analysis of Self-propagating High-temperature Synthesis TiC-Al[J]. Journal of Gansu Sciences, 2008, 20(3): 35-38 doi: 10.3969/j.issn.1004-0366.2008.03.010
    [20]
    石建稳, 王引真, 李小龙. 自蔓延高温合成TiC-Ni金属陶瓷的热力学编程计算与分析[J]. 材料热处理学报, 2005, 26(1): 93-96

    SHI Jianwen, WANG Yinzhen, LI Xiaolong. Computation and analysis of thermodynamics of self-propagating high-temperature synthesis TiC-Ni cermets[J]. Transactions of Materials and Heat Treatment, 2005, 26(1): 93-96
    [21]
    尹丹凤. 自蔓延高温合成金属钒的热力学研究[J]. 有色金属(冶炼部分), 2014(1): 37-39

    YIN Danfeng. Study on thermodynamics of vanadium self-propagating high-temperature synthesis[J]. Nonferrous Metals (Extractive Metallurgy), 2014(1): 37-39
    [22]
    何祖明, 夏咏梅, 郑明芳, 等. 自蔓延高温合成MgCNi3的热力学计算与分析[J]. 常州大学学报(自然科学版), 2010, 22(4): 11-14

    HE Zuming, XIA Yongmei, ZHENG Mingfang, et al. Thermodynamics calculation and analysis of self-propagating high-temperature synthesis MgCNi3[J]. Journal of Jiangsu Polytechnic University, 2010, 22(4): 11-14
    [23]
    梁建军, 王苏雯, 陈龙, 等. 火驱尾气中H2S与O2化学反应热力学研究[J]. 西安石油大学学报(自然科学版), 2019, 34(1): 95-99,114

    LIANG Jianjun, WANG Suwen, CHEN Long, et al. Thermodynamics of chemical reaction between H2S and O2 in in-situ combustion exhaust[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2019, 34(1): 95-99,114
    [24]
    陈国星, 陈云, 熊振兴. Ti-C-Al-Ni体系热爆反应的热力学理论分析及其影响因素[J]. 热处理技术与装备, 2008, 29(5): 5-10 doi: 10.3969/j.issn.1673-4971.2008.05.002

    CHEN Guoxing, CHEN Yun, XIONG Zhenxing. Thermodynamics analysis and influence factor on thermal explosion process of Ti-C-Al-Ni[J]. Heat Treatment Technology and Equipment, 2008, 29(5): 5-10 doi: 10.3969/j.issn.1673-4971.2008.05.002
    [25]
    宋谋胜. 燃烧合成TiC、ZrC晶体的形成过程与生长动力学研究[D]. 上海: 上海交通大学, 2009

    SONG Mousheng. Investigation of the Formation Process and Growth Kinetics of Combustion Synthesized TiC and ZrC Crystals[D]. Shanghai: Shanghai Jiaotong University, 2009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article Views(1008) PDF Downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return