Volume 42 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
LI Wentao, ZHANG Sai, HE Jiabei, DENG Zhoukun, YANG Qiwu, SHANG Xiongjun, ZHOU Qinghua. Parametric Study on Interaction between Superluminous L-O Mode Waves and Radiation Belt Electrons (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1079-1088 doi: 10.11728/cjss2022.05.210421054
Citation: LI Wentao, ZHANG Sai, HE Jiabei, DENG Zhoukun, YANG Qiwu, SHANG Xiongjun, ZHOU Qinghua. Parametric Study on Interaction between Superluminous L-O Mode Waves and Radiation Belt Electrons (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1079-1088 doi: 10.11728/cjss2022.05.210421054

Parametric Study on Interaction between Superluminous L-O Mode Waves and Radiation Belt Electrons

doi: 10.11728/cjss2022.05.210421054 cstr: 32142.14.cjss2022.05.210421054
  • Received Date: 2021-04-21
  • Accepted Date: 2022-04-13
  • Rev Recd Date: 2022-04-21
  • Available Online: 2022-10-08
  • The parametric study focuses on the interaction between the superluminous Left-hand Ordinary (L-O) mode waves and radiation belt electrons. Bounce-averaged diffusion rates in pitch angle, momentum and cross are calculated by varying the peak wave frequency, the wave normal angle distribution, and the wave latitudinal distribution. Calculation results show that the momentum diffusion coefficients are generally greater by about 100 times than the pitch angle diffusion coefficients, which suggests that L-O mode waves have a potential for producing acceleration of electrons. With the varying normal angle range, the change of diffusion coefficients is not obvious, and the result indicates that diffusion coefficients of the interaction between L-O mode and electrons have little dependence on the normal angle range. In addition, diffusion coefficients are largely determined by the wave latitudinal distributions, which is consistent with the case of R-X mode waves. These results indicate that L-O mode can obviously affect the dynamic of radiation belt electrons under appropriate conditions.

     

  • loading
  • [1]
    GURNETT D A. The earth as a radio source: terrestrial kilometric radiation[J]. Journal of Geophysical Research: Research, 1974, 79(28): 4227-4238 doi: 10.1029/JA079i028p04227
    [2]
    HANASZ J, SCHREIBER R, PICKETT J, et al. Pulsations of auroral kilometric radiation at Pc1 frequencies[J]. Geophysical Research Letters, 2008, 35(15): L15819 doi: 10.1029/2008GL034609
    [3]
    KURTH W S, BAUMBACK M M, GURNETT D A. Direction-finding measurements of auroral kilometric radiation[J]. Journal of Geophysical Research: Research, 1975, 80(19): 2764-2770 doi: 10.1029/JA080i019p02764
    [4]
    WU C S, LEE L C. A theory of the terrestrial kilometric radiation[J]. The Astrophysical Journal, 1979, 230: 621-626 doi: 10.1086/157120
    [5]
    CALVERT W. The signature of auroral kilometric radiation on Isis 1 ionograms[J]. Journal of Geophysical Research: Space Physics, 1981, 86(A1): 76-82 doi: 10.129/JA086iA01p00076
    [6]
    CALVERT W. The auroral plasma cavity[J]. Geophysical Research Letters, 1981, 8(8): 919-921 doi: 10.1029/GL008i008p00919
    [7]
    GURNETT D A, SHAWHAN S D, SHAW R R. Auroral hiss, Z mode radiation, and auroral kilometric radiation in the polar magnetosphere: DE 1 observations[J]. Journal of Geophysical Research: Space Physics, 1983, 88(A1): 329 doi: 10.1029/JA088iA01p00329
    [8]
    HASHIMOTO K, CALVERT W. Observation of the Z mode with DE 1 and its analysis by three‐dimensional ray tracing[J]. Journal of Geophysical Research: Space Physics, 1990, 95(A4): 3933-3942 doi: 10.1029/JA095iA04p03933
    [9]
    SUMMERS D, THORNE R M, XIAO F L. Gyroresonant acceleration of electrons in the magnetosphere by superluminous electromagnetic waves[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A6): 10853-10868 doi: 10.1029/2000JA000309
    [10]
    XIAO F L, HE H Y, ZHOU Q H, et al. Relativistic diffusion coefficients for superluminous (auroral kilometric radiation) wave modes in space plasmas[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A11): A11201 doi: 10.1029/2006JA011865
    [11]
    XIAO F L, SU Z P, CHEN L X, et al. A parametric study on outer radiation belt electron evolution by superluminous R-X mode waves[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A10): A10217 doi: 10.1029/2010ja015374
    [12]
    ZHANG S, SHANG X J, HE Y H, et al. Dominant roles of high harmonics on interactions between AKR and radiation belt relativistic electrons[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088421 doi: 10.1029/2020GL088421
    [13]
    HUFF R L, CALVERT W, CRAVEN J D, et al. Mapping of auroral kilometric radiation sources to the aurora[J]. Journal of Geophysical Research: Space Physics, 1988, 93(A10): 11445-11454 doi: 10.1029/JA093iA10p11445
    [14]
    KURTH W S, DE PASCUALE S, FADEN J B, et al. Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes[J]. Journal of Geophysical Research: Space Physics, 2015, 120(2): 904-914 doi: 10.1002/2014JA020857
    [15]
    XIAO F L, ZHOU Q H, SU Z P, et al. Explaining occurrences of auroral kilometric radiation in Van Allen radiation belts[J]. Geophysical Research Letters, 2016, 43(23): 11971-11978 doi: 10.1002/2016GL071728
    [16]
    ZHAO W L, LIU S, ZHANG S, et al. Global occurrences of auroral kilometric radiation related to suprathermal electrons in radiation belts[J]. Geophysical Research Letters, 2019, 46(13): 7230-7236 doi: 10.1029/2019GL083944
    [17]
    ZHANG S, LIU S, LI W T, et al. A concise empirical formula for the field-aligned distribution of auroral kilometeric radiation based on Arase satellite and Van Allen Probes[J]. Geophysical Research Letters, 2021, 48(8): e2021GL092805 doi: 10.1029/2021GL092805
    [18]
    HANASZ J, PANCHENKO M, DE FERAUDY H, et al. Occurrence distributions of the auroral kilometric radiation ordinary and extraordinary wave modes[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A11): 1408 doi: 10.1029/2002JA009579
    [19]
    NAKAMURA Y, FUKUDA S, SHIBANO Y, et al. Exploration of energization and radiation in geospace (ERG): challenges, development, and operation of satellite systems[J]. Earth Planets and Space, 2018, 70(1): 102 doi: 10.1186/s40623-018-0863-z
    [20]
    STIX T H. Waves in Plasmas[M]. 2 nd ed. New York: American Institute of Physics, 1992.
    [21]
    LYONS L R, WILLIAMS D J. Quantitative Aspects of Magnetospheric Physics[M]. Dordrecht Boston: Springer, 1984.
    [22]
    GLAUERT S A, HORNE R B. Calculation of pitch angle and energy diffusion coefficients with the PADIE code[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A4): A04206 doi: 10.1029/2004JA010851
    [23]
    SUMMERS D, NI B B. Effects of latitudinal distributions of particle density and wave power on cyclotron resonant diffusion rates of radiation belt electrons[J]. Earth, Planets and Space, 2008, 60(7): 763-771 doi: 10.1186/BF03352825
    [24]
    SUMMERS D. Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A8): A08213 doi: 10.1029/2005JA011159
    [25]
    LYONS L R. Pitch angle and energy diffusion coefficients from resonant interactions with ion–cyclotron and whistler waves[J]. Journal of Plasma Physics, 1974, 12(3): 417-432 doi: 10.1017/S002237780002537X
    [26]
    SUMMERS D, THORNE R M. Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A4): 1143 doi: 10.1029/2002JA009489
    [27]
    ERGUN R E, CARLSON C W, MCFADDEN J P, et al. FAST satellite wave observations in the AKR source region[J]. Geophysical Research Letters, 1998, 25(12): 2061 doi: 10.1029/98GL00570
    [28]
    XIAO F L, CHEN L J, ZHENG H N, et al. A parametric ray tracing study of superluminous auroral kilometric radiation wave modes[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A10): A10214 doi: 10.1029/2006JA012178
    [29]
    SHPRITS Y Y, NI B. Dependence of the quasi-linear scattering rates on the wave normal distribution of chorus waves[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A11): A11205 doi: 10.1029/2009JA014223
    [30]
    THORNE R M, O'BRIEN T P, SHPRITS Y Y, et al. Timescale for MeV electron microburst loss during geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A9): A09202 doi: 10.1029/2004JA010882
    [31]
    SUMMERS D, NI B B, MEREDITH N P. Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A4): A04207 doi: 10.1029/2006JA011993
    [32]
    XIAO F L, THORNE R M, SUMMERS D. Higher-order gyroresonant acceleration of electrons by superluminous (AKR) wave-modes[J]. Planetary and Space Science, 2007, 55(10): 1257-1271 doi: 10.1016/j.pss.2007.02.004
    [33]
    LI W, SHPRITS Y Y, THORNE R M. Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A10): A10220 doi: 10.1029/2007JA012368
    [34]
    XIAO F L, SU Z P, ZHENG H N, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A3): A03201 doi: 10.1029/2008JA013580
    [35]
    DENTON R E, GOLDSTEIN J, MENIETTI J D, et al. Magnetospheric electron density model inferred from Polar plasma wave data[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A11): 1386 doi: 10.1029/2001JA009136
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(376) PDF Downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return