Citation: | LI Hui, WANG Runze, WANG Chi. Prediction of Partial Ring Current Index Using LSTM Neural Network. Chinese Journal of Space Science, 2022, 42(5): 873-883 doi: 10.11728/cjss2022.05.210513061 |
[1] |
DUNGEY J W. Interplanetary magnetic field and the Auroral zones[J]. Physical Review Letters, 1961, 6(2): 47-48 doi: 10.1103/PhysRevLett.6.47
|
[2] |
GONZALEZ W D, JOSELYN J A, KAMIDE Y, et al. What is a geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 1994, 99(A4): 5771-5792 doi: 10.1029/93JA02867
|
[3] |
BURTON R K, MCPHERRON R L, RUSSELL C T. An empirical relationship between interplanetary conditions and Dst[J]. Journal of Geophysical Research, 1975, 80(31): 4204-4214 doi: 10.1029/JA080i031p04204
|
[4] |
DAGLIS I A, THORNE R M, BAUMJOHANN W, et al. The terrestrial ring current: origin, formation, and decay[J]. Reviews of Geophysics, 1999, 37(4): 407-438 doi: 10.1029/1999RG900009
|
[5] |
KAMIDE Y, BAUMJOHANN W, DAGLIS I A, et al. Current understanding of magnetic storms: storm-substorm relationships[J]. Journal of Geophysical Research: Space Physics, 1998, 103(A8): 17705-17728 doi: 10.1029/98JA01426
|
[6] |
WANG C B, CHAO J K, LIN C H. Influence of the solar wind dynamic pressure on the decay and injection of the ring current[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A9): 1341 doi: 10.1029/2003JA009851
|
[7] |
FENRICH F R, LUHMANN J G. Geomagnetic response to magnetic clouds of different polarity[J]. Geophysical Research Letters, 1998, 25(15): 2999-3002 doi: 10.1029/98GL51180
|
[8] |
O’BRIEN T P, MCPHERRON R L. Forecasting the ring current index Dst in real time[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62(14): 1295-1299 doi: 10.1016/S1364-6826(00)00072-9
|
[9] |
LUNDSTEDT H, WINTOFT P. Prediction of geomagnetic storms from solar wind data with the use of a neural network[J]. Annales Geophysicae, 1994, 12(1): 19-24 doi: 10.1007/s00585-994-0019-2
|
[10] |
LUNDSTEDT H, GLEISNER H, WINTOFT P. Operational forecasts of the geomagnetic Dst index[J]. Geophysical Research Letters, 2002, 29(24): 2181 doi: 10.1029/2002GL016151
|
[11] |
WU J G, LUNDSTEDT H. Prediction of geomagnetic storms from solar wind data using Elman Recurrent Neural Networks[J]. Geophysical Research Letters, 1996, 23(4): 319-322 doi: 10.1029/96GL00259
|
[12] |
WEI H L, ZHU D Q, BILLINGS S A, et al. Forecasting the geomagnetic activity of the Dst index using multiscale radial basis function networks[J]. Advances in Space Research, 2007, 40(12): 1863-1870 doi: 10.1016/j.asr.2007.02.080
|
[13] |
LAZZÚS J A, LÓPEZ-CARABALLO C H, ROJAS P, et al. Forecasting of DST index from auroral electrojet indices using time-delay neural network + particle swarm optimization[J]. Journal of Physics:Conference Series, 2016, 720: 012001 doi: 10.1088/1742-6596/720/1/012001
|
[14] |
GRUET M A, CHANDORKAR M, SICARD A, et al. Multiple-hour-ahead forecast of the Dst index using a combination of long short-term memory neural network and Gaussian process[J]. Space Weather, 2018, 16(11): 1882-1896 doi: 10.1029/2018SW001898
|
[15] |
BOYNTON R J, BALIKHIN M A, BILLINGS S A, et al. Data derived NARMAX Dst model[J]. Annales Geophysicae, 2011, 29(6): 965-971 doi: 10.5194/angeo-29-965-2011
|
[16] |
LI H, WANG C, TU C, et al. Machine learning approach for solar wind categorization[J]. Earth and Space Science, 2020, 7(5): e2019EA000997 doi: 10.1029/2019EA000997
|
[17] |
LU J Y, PENG Y X, WANG M, et al. Support Vector Machine combined with distance correlation learning for Dst forecasting during intense geomagnetic storms[J]. Planetary and Space Science, 2016, 120: 48-55 doi: 10.1016/j.pss.2015.11.004
|
[18] |
LI H, WANG C, KAN J R. Contribution of the partial ring current to the SYMH index during magnetic storms[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A11): A11222 doi: 10.1029/2011JA016886
|
[19] |
NEWELL P T, GJERLOEV J W. SuperMAG-based partial ring current indices[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A5): A05215 doi: 10.1029/2012JA017586
|
[20] |
BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166 doi: 10.1109/72.279181
|
[21] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
|
[22] |
LETHY A, EL-ERAKI M A, SAMY A, et al. Prediction of the Dst index and analysis of its dependence on solar wind parameters using neural network[J]. Space Weather, 2018, 16(9): 1277-1290 doi: 10.1029/2018SW001863
|
[23] |
LAZZÚS J A, VEGA P, ROJAS P, et al. Forecasting the Dst index using a swarm-optimized neural network[J]. Space Weather, 2017, 15(8): 1068-1089 doi: 10.1002/2017SW001608
|